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Chapter 6

Multivariate Time Series Analysis

6.0.1 Introduction

Multivariate analysis investigates dependence and interactions among a set of vari-
ables in multi-values processes. One of the most powerful method of analyzing
multivariate time series is the vector autoregression model. It is a natural extension
of the univariate autoregressive model to the multivariate case.

In this chapter we cover concepts of VAR modelling, non-stationary multivari-
ate time series and cointegration.

More detailed discussion can be found in Hamilton (1994), Harris (1995), En-
ders (2004), Tsay (2002), Zivot and Wang (2006).

6.1 Vector Autoregression Model

Let Yy = (Y14, Yoy, ...,Ymt)' denote an k x 1 vector of time series variables. The

basic vector autoregressive model of order p, VAR(p), is
Yt:C+H1Yt_1+H2Yt_2+...+Hth_p+ut, t= 1,...,T, (611)

where II; are k x k matrices of coefficients, c is a k£ x 1 vector of constants and u, is
an k x 1 unobservable zero mean white noise vector process with covariance matrix
3.

If we consider a special case of two dimensional vector Y, the VAR consists

of two equation (also called a bivariate VAR)
Y, = Yi,t _ C1 i 77%1 77%2 le,tfl
Yr2,t Ca T91 Tog YQ,t—l
2 2 Y,
+ ( 7%1 W;z ) ( 1,t—2 ) I ( U1t ) (6.1.2)
To1 T Yoo U2 ¢
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with cov (uy 4, ugs) = 012 for t # s.
As in the univariate case with AR processes, we can use the lag operator to
represent VAR(p)
I(L)Y; = ¢+ uy,

where II(L) = I,, — I, L — ... — I, LP.
If we impose stationarity on Y, in (6.1.2), the unconditional expected value is
given by
p= (L, -1 —...—1,) e

Very often other deterministic terms or stochastic exogenous variables may be in-
cluded into the VAR specification to represent. More general form of the VAR(p)
model is

Y, =ILY, 1 +ILY;, o+ ... +ILY, , +I'X; + uy,

where X, represents an m x 1 matrix of exogenous or deterministic variables, and

I' is a matrix of parameters.
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6.1.1 Estimation of VARs and Inference on coefficients

Since the VAR(p) may be written as a system of equations with the same sets of
explanatory variables, its coefficients can be efficiently and consistently estimated
by estimating each of the components using the OLS method (see Hamilton (1994)).
Under standard assumptions regarding the behavior of stationary and ergodic VAR
models (see Hamilton (1994) the estimators of the coefficients are asymptotically
normally distributed.

An element of II; is asymptotically normally distributed, so asymptotically
valid t-tests on individual coefficients may be constructed in the usual way (see
Chapter 2). More general linear hypotheses can also be tested using the Wald
statistic.

Lag Length Selection A reasonable strategy how to determine the lag length
of the VAR model is to fit VAR(p) models with different orders p = 0, ..., pas and
choose the value of p which minimizes some model selection criteria. Model selection
criteria for VAR(p) could be based on Akaike (AIC), Schwarz-Bayesian (BIC) and
Hannan-Quinn (HQ) information criteria:

_ 2
AIC(p) = n[S(p)| + Zpn?

T
_ InT

BIC(p) = n [S(p)]| + ——pn’
_ 2InInT

HQ(p) = In|X(p)| + Tan

Forecasting We can use VAR model to forecast times series in a similar way
to forecasting from a univariate AR model.
The one-period-ahead forecast based on information available at time T is

YT+1|T =cCc+ HIYT + ...+ HpYTprrl
while h-step forecast is
YT—}—h\T =cC+ HlYT + ...+ HPYT—]H-h

where Y, ;7 = Y for j < 0. The h-step forecast errors may be expressed as

h—1

Yrin— Yrinr = E Veerin_s,
s=0

where the matrices ¥, are determined by recursive substitution

p—1
U= U, (6.1.3)
j=1
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with Wy = [, and II; = 0 for j > p. The forecasts are unbiased since all of the
forecast errors have expectation zero and the MSE matrix for Y, 47 is

h—1
S(h) = MSE (X4 — Yranr) = » U ST
s=0

The h-step forecast in the case of estimated parameters is
Yrnr =Yoo ar + o + I, Y pir,

where ﬂj are the estimated matrices of parameters. The h-step forecast error is now

h—1
Yrin — Yrinr = Z‘Ps&mh—s + <Yt+h — YT+h|T>
s=0

The estimate of the MSE matrix of the h-step forecast is then

7=1

6.1.2 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the VAR
model provides information about a variable’s or a group of variables’ forecasting
ability for other variables. The following intuitive notion of a variable’s forecasting
ability is due to Granger (1969). If a variable, or group of variables, Y7 is found
to be helpful for predicting another variable, or group of variables, Y, then Y] is
said to Granger-cause Y5; otherwise it is said to fail to Granger-cause Y5. For-
mally, Y; fails to Granger-cause Y if for all s > 0 the MSE of a forecast of Y5,
based on (Ya;, Y2 1,...) is the same as the MSE of a forecast of Y5, based on
(Yar, Yoio1,...) and (Y14, Yi4-1,...). Note that the notion of Granger causality only
implies forecasting ability.

In a bivariate VAR(p) model for Y; = (Y3, Ya;)', Y3 fails to Granger-cause Y;
if all of the p VAR coefficient matrices I1y, ..., 1, are lower triangular. That is, all of
the coefficients on lagged values of Y5 are zero in the equation for Y;. The p linear
coefficient restrictions implied by Granger non-causality may be tested using the
Wald statistic. Notice that if Y; fails to Granger-cause Y; and Y; fails to Granger-
cause Y3, then the VAR coefficient matrices 114, ..., 1, are diagonal.
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6.1.3 Impulse Response and Variance Decompositions

As in the univariate case, a VAR(p) process can be represented in the form of a
vector moving average (VMA) process.

Yi=p+uw+Viw y +VPouy o+ ..,

where the k x k moving average matrices ¥ are determined recursively using (6.1.3).
The elements of coeflicient matrices ¥, mean effects of u;_, shocks on Y,.

That is, the (7, j)-th element, 17;, of the matrix W, is interpreted as the impulse
response

Wirrs _ MWir _ ij=1,..,T.

Oy Ouji—s K
Sets of coefficients 1;;(s) = i &7 = 1,..,T are called the impulse response
functions.

It is possible to decompose the h-step-ahead forecast error variance into the
proportions due to each shock ;.

The forecast variance decomposition determines the proportion of the variation
Y;: due to the shock uj; versus shocks of other variables u;; for i # j.
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6.1.4 VAR in EViews

As an example of VAR estimation in EViews, consider two time series of returns of
monthly IBM stocks and the market portfolio returns from Fama-French database
(data is contained in IBM1.wfl).

There are several ways to estimate VAR model in EViews. The first one is
through the main menu. Clicking on View/Estimate VAR... will open a dialog
window for VAR model estimation.

VAR Specification X

Basics | Cointegration | YEC Restrictions

VAR Tvpe Endogenous Variables
() Unrestricted YaR. ibrm_es mikk_ex|

O ‘ector Error Carrection

Estimation Sarmple Lag Intervals for Endogenous:

1950m01 2007m03 1z

Exogenous Yariables

C

Ok ] [ Cancel

Figure 6.1: VAR model estimation dialog window

We choose Unrestricted VAR and in the Endogenous Variables box we
have to specify the list of endogenous time series variables to be included in the
VAR model. We consider two excess return series of the IBM stock IBM _ex and the
market portfolio Mkt _ex.

In the Lag Intervals for Endogenous we have to specify the order of the
model, that is interval of lags to be included in the model. If we want to build a
model with only two lags, we write 1 2. This means, we include all lags beginning
from the first one and ending with the lag of order 2. We do not specify any
exogenous variables apart from the intercept term c.

Another way of calling the VAR estimation dialog window is to select both
endogenous variables in the workfile and in the context menu (right button click)
choose Open/as VAR.... The Endogenous Variables box will be filled in auto-
matically.

Finally, we can estimate VAR model from the command line. There is a
separate object, called var, to declare the VAR model. The estimation of the above
mentioned example will look like
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var ibm2.Is 1 2 ibm _ex mkt_ex

Here ibm2 is a name of the var-object which will be saved in the workfile, Is indicates
the estimation method; in this case it is OLS estimation method of the unrestricted
VAR model. Then, specifications of the lags pairs and the list of endogenous vari-
ables follow. If one wishes to include exogenous variables besides the intercept, it
can be done by typing a symbol @ followed by a list of exogenous variables. For
example,

var ibm2.Is 1 2 ibm _ex mkt_ex @ exvarl exvar2

Click OK and EViews produces an estimation output for the specified VAR model.

M Var: IBM2 Workfile: IBM2::Data_ibm_ff}

Freeze| Estimate Impulse

| Vector Autoregression Estimates

Wector Autoregression Estimates

Date: 01/03/09 Time: 11:54

Sample {adjusted): 1950003 2007M09
Included ohservations: 691 after adjustments
Standard errors in () & tstatistics in []

IBM_EX MKT_EX
IBM_EXI(-1) 0.004969 0.004618
(0.04688) (0.02849)
[0.21267] [0.16208]
IBM_EX-2) 0.061395 0.011865
(0.04689) (0.02850)
[1.20944] [0.41630]
MET_EXi-1) 0.069736 0.0748845

(0.07747) (0.0470%9)
[0.90017] [1.569023]

MET_EXi-2) -0.198868 -0.044936
(0.07745) (0.04708)

[-2.86754] [-0.95443]

C 0.oo0g3as 0.001999

(0.00268) (0.00163)

[3.12617] [1.22556]

R-=zquared 0.011416 0.007309
Adj. R-squared 0.005651 0.001520
Sum sq. resids 3.306425 1.221712
5.E. equation 0.069425 0042201
F-statistic 1.980399 1.262645
Laog likelihood 8652686 1208.253
Akaike AIC -2.489923 -3.485538
Schwarz SC -2.457086 -3.452700
Mean dependent 0.0087245 0002207
5.0 dependent 0.069622 0.042233
Determinant resid covariance {dof adj.) 5.64E-06
Determinant resid covariance 4.56E-06
Laog likelihood 2218343
Akaike information criterion -6.394625
Schwarz criterion -6.328940

Figure 6.2: Output for the VAR model estimation

Two columns correspond to two equation in the VAR model. The only signifi-

cant coefficient besides the intercept one is at the second lag of the market portfolio

Download free eBooks at bookboon.com

101


http://bookboon.com/

Financial Econometrics Multivariate Time Series Analysis

returns in the IBM equation. As expected, there is a unidirectional dynamic rela-
tionship from the market portfolio returns to the IBM returns, Thus, the IBM return
is affected by the past movements of the market while past movements of IBM stock
returns do not affect the market portfolio returns. The second equation (for market
portfolio) is not significant as suggested by the F-statistics. This means that the
the estimated model cannot explain variation in the market portfolio returns. This
can happen because we possibly omitted some important exogenous variables or the
order of the model is inappropriately selected. EViews provides a tool to choose the
most suitable lag order. In the workfile menu choose View/Lag Structure/Lag
Length Criteria... to determine the optimal model structure. In the appeared
Lag Specification window we choose py.,; = 8 (maximal lag order).

All criteria indicate that the optimal lag order of the model is 0. This means
that the VAR model is inappropriate model to explain IBM and market portfolio
returns. Indeed, we know from the CAPM that market portfolio returns affect
the stock returns contemporaneously and are not in lag relationship. Thus, either
additional exogenous factors should be found to include in the model or another
structure of the model should be employed in this case.
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BN Var: IBM2 Workfile: IBM2::Data_ibm_ffA

Object Freeze | |Estimate Impulse

WAR Lag Order Selection Criteria
Endogenous wariahles: IBM_EX MET_EX
Exogenous variables: &

Date: 01/03/09 Time: 12:27

Sample: 1950M01 2007M09

Included observations: 625

Lag LogL LR FFE AlC sC HQ

0 2194622 AT 5.69e-06" -6.401817*  -B.388693*  -6.396700%
1 2196.775 4287075 572e-06 -6.396424 -6.356741 -6.381073
2 2199.864 6131986 5.73e-06 -6.393763 -6.327640 -6.368177
3 2201.623 3481326 5.77e-06 -6.387218 -6.294647 -f.351399
4 2203.219 31580236 5.81e-06 -f.380200 -6.261179 -6.334146
] 2205939 5.354029 5.83e-06 -6.376465 -£.230995 -6.320176
4 2206.141 0395622 5.90e-06 -6.365375 -6.193455 -6.298852
7 2206.432 0568871 5.96e-06 -6.354545 -6.156177 -6.27TT87
2 2207.274 1.642798 6.02e-06 -6.346326 -6.120508 -F.258334

*indicates lag arder selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FFE: Final prediction errar

AlC: Akaike infarmation criterian

S Schwarz information criterion

H&: Hannan-Quinn information criterion

Figure 6.3: Output for the lag length selection procedure

Lag selection can be programmed manually in the same way as it is done for
ARMA model (see Chapter 3). There are some command references given below
which can be used to assess various statistic values in the VAR analysis in EViews.

6.2 Cointegration

The assumption of stationary of regressors and regressands is crucial for the proper-
ties and the OLS estimators discussed in Chapter 2. In this case, the usual statistical
results for the linear regression model and consistency of estimators hold. However,

when variables are non-stationary then the usual statistical results may not hold.

6.2.1 Spurious Regression

If there are trends in the data (deterministic or stochastic) this can lead to a spurious
results when running OLS regression. This is because time trend will dominate other
stationary variables and the OLS estimators will pick up covariances generated by
time trends only. While the effects of deterministic trends can be removed from the
regression by either including time trend regressor or simply de-trending variables,
non-stationary variables with stochastic trends may lead to invalid inferences.
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Var Data Members

Data Member Description

@eqlogl(k) log likelihood for equation k

@eqneoef(k) number of estimated coefficients in equation k

@eqregobs(k) number of observations in equation k

@meandep(k) mean of the dependent variable in equation k

@r2(k) R-squared statistic for equation k

@rbar2(k) adjusted R-squared statistic for equation k

@sddep(k) standard deviation of dependent variable in equation k

@se(k) standard error of the regression in equation k

@ssr(k) sum of squared residuals in equation k

@aic Akaike information criterion for the system

Q@detresid determinant of the residual covariance matrix

@hq Hannan-Quinn information criterion for the system

@logl log likelihood for system

@ncoefs total number of estimated coefficients in the var

@neqn number of equations

@regobs number of observations in the var

@sc Schwarz information criterion for the system
Returns an integer indicating the convergence type of the structural decomposi-

@svarcvgtype tion estimation: 0 (convergence achieved), 2 (failure to improve), 3 (maximum
iterations reached), 4 (no convergence-structural decomposition not estimated)

@gvaroverid over-identification LR statistic from structural factorization

@totalobs sum of "@eqregobs" from each equation ("@regobs*@neqn")

@coefmat coefficient matrix (as displayed in output table)

@coefse matrix of coefficient standard errors (corresponding to the output table)

@impfact factorization matrix used in last impulse response view

@lrrsp accumulated long-run responses from last impulse response view

Q@Irrspse standard errors of accumulated long-run responses

@residcov covariance matrix of the residuals

@svaramat estimated A matrix for structural factorization

@gvarbmat estimated B matrix for structural factorization

@svarcovab covariance matrix of stacked A and B matrix for structural factorization

@gvarrcov restricted residual covariance matrix from structural factorization

Consider, for example,

Yig=Yii1 +uig, u1, ~ IN(0,1)

Yor = Yo 1+ ugy, ugy ~ IN(0,1)
Both of the variables are non-stationary and independent from each other. In the
regression Y;,; = By + f1Ya, + €, the value of true slope parameter $; = 0. Thus,
the value of the OLS estimate f; should be insignificant. The actual estimations
produce high R? coefficients and highly significant 3;.

The problem with the spurious regression is that t- and F-statistics do not

follow standard distributions. As shown in Phillips (1986), B does not converge in
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probability to zero, R? converges to unity as 7' — oo so that the model will appear
to fit well even though it is misspecified.
Regression with I(1) data only makes sense when the data are cointegrated.

6.2.2 Cointegration

Let Y, = (Yi, ..., Yir)' denote an k x 1 vector of I(1) time series. Y, is cointegrated
if there exists an k x 1 vector = (/31 ..., Bx)’ such that

Zi=P8Y:= Y+ ..+ BiYi ~ 1(0). (6.2.1)

The non-stationary time series in Y; are cointegrated if there is a linear combination
of them that is stationary. If some elements of S are equal to zero then only the
subset of the time series in Y; with non-zero coefficients is cointegrated.

There may be different vectors [ such that Z, = f"Y, is stationary. In general,
there can be 0 < r < k linearly independent cointegrating vectors. All cointegrating
vectors form a cointegrating matrix B. This matrix is again not unique. Some
normalization assumption is required to eliminate ambiguity from the definition.
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A typical normalization is

ﬁ - (17 _BQa ) _Bk)/
so that the cointegration relationship may be expressed as

Z,=p0Y: =Yy — (Yo — ... — BiYi ~ 1(0).

6.2.3 Error Correction Models

Engle and Granger (1987) state that if a bivariate I(1) vector Y, = (Y}, Ya,)" is coin-
tegrated with cointegrating vector = (1, — ()’ then there exists an error correction
model (ECM) of the form

AYy =01+ o1 (Yiim1 — BrYou1 + ZailAYl,t_j + ZOZ{QAYz,t—j +e1r (6.2.2)

]:1 s=1
AYo = 00+ ¢po(Yi4—1 — BaYou1 + ZaglAYl,t—j + Z@%gAYé,t—j +ex (6.2.3)
=1 s—1

that describes the long-term relations of Y3, and Ya,. If both time series are I(1)
but are cointegrated (have a long-term stationary relationship), there is a force that
brings the error term back towards zero. If the cointegrating parameter 8; or (35 is
known, the model can be estimated by the OLS method.

6.2.4 Tests for Cointegration: The Engle-Granger Approach

Engle and Granger (1987) show that if there is a cointegrating vector, a simple
two-step residual-based testing procedure can be employed to test for cointegration.
In this case, a long-run equilibrium relationship between components of Y; can be
estimated by running

Yii=0Y2; + w, (6.2.4)

where Yo, = (Yay, ..., Yi¢) is an (K — 1) x 1 vector. To test the null hypothesis that
Y, is not cointegrated, we should test whether the residuals 4, ~ I(1) against the
alternative 4; ~ I(0). This can be done by any of the tests for unit roots. The
most commonly used is the augmented Dickey-Fuller test with the constant term
and without the trend term. Critical values for this test is tabulated in Phillips and
Ouliaris (1990) or MacKinnon (1996).

Potential problems with Engle-Granger approach is that the cointegrating vec-
tor will not involve Y; ; component. In this case the cointegrating vector will not be

consistently estimated from the OLS regression leading to spurious results. Also, if
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there are more than one cointegrating relation, the Engle-Granger approach cannot
detect all of them.

Estimation of the static model (6.2.4) is equivalent to omitting the short-term
components from the error-correction model (6.2.3). If this results for autocorrela-
tion in residuals, although the results will still hold asymptotically, it might create a
severe bias in finite samples. Because of this, it makes sense to estimate the full dy-
namic model. Since all variables in the ECM are I(0), the model can be consistently
estimated using the OLS method. This approach leads to a better performance as
it does not push the short-term dynamics into residuals.

6.2.5 Example in EViews: Engle-Granger Approach

Consider as an example the Forward Premium Puzzle. Due to rational expectation
hypothesis, forward rate should be unbiased predictor of future spot exchange rate.
This means that in the regression of levels of spot S;.; on forward rate F; the
intercept coefficient should be equal to zero and the slope coefficient should be
equal to unity.

Consider monthly data of the USG/GBP spot and forward exchange rate for
the period from January 1986 to November 2008 (the data is in FPP.wfl file).

His @b0ook 1s Propucep with 1Text®
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Unit roots are often found in in levels of spot and forward exchange rates.
Augmented Dickey-Fuller test statistic values are -2.567 and -2.688 which are high
enough to fail rejecting the null hypothesis at 5% significance level. Phillips-Perron
test produces test statistic which value os on the border of the rejection region.
Thus, if two series are not cointegrated, there is a danger to obtain spurious results
from the OLS regression. However, if we look at plots of the two series we can see
that they co-move together very closely, so we can expect existence of cointegrating

relation between them.

M Group: GROUPO1 Workfile: FP::Fp}
(v eroc] byt [pnsme rezae) (samge)

T8

A5

T T T T T T T T T T T T T T T T T T T T T T
86 88 490 92 94 95 98 00 02 04 06 08

— F_SPT — FWD

Figure 6.4: Plots of forward and future spot USD/GBP exchange rates

To perform Engle-Granger test for cointegration let us run OLS regression
Siv1 = BF; + vy in EViews and generate residuals from the model.

Is f spt fwd
series residl=resid

The second step is to test the residuals for stationarity. Augmented Dickey-Fuller
test strongly rejects the presence of a unit root in the residual series in the favour
of stationarity hypothesis.

Similar results are generated by other testing procedures. Thus, we conclude
that future spot and forward exchange rates are cointegrated. Hence, the OLS
results are valid for the regression in levels as well. In this case the slope coefficient
is equal to 0.957 which is positive and close to unity. However, we reject the null
hypothesis Hy: f; = 1 with the Wald test.

Thus, the forward premium puzzle also exists even for the model in levels for

the exchange rates.
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M Series: RESID1 Workfile: FP::Fp\

Augmented Dickey-Fuller Unit Root Test on RESID

Ll

Mull Hypothesis: RESIDT has a unit root
Exogenous: Constant
Lag Length: 0 {(automatic based on SIC, MAXLAG=145)

-Statistic Frob*

Augmented Dickey-Fuller test statistic -14.51667 0.0000
Test critical values: 1% level -3.454085
8% level -2.871883
10% level -2.572354

*Mackinnon {1996) one-sided p-values.

Figure 6.5: Results of Augmented Dickey-Fuller test for residuals from the long-
run equilibrium relationship

™ Equation; FQ01 Workfile: FP::Fp\ 9(=(E3]
Object Freeze| [Estimate ||Forecast
Wald Test:

Eguation: EQ01

Test Statistic Walue df Frobability
F-statistic 7485758 (1,273 o.o0oa
Chi-sguare 7485758 1 0.0000

Mull Hypothesis Summary:

Mormalized Restriction = 0} Walue Std. Err.

S+ G -0.977112 0011293

Restrictions are linear in coefiicients.

Figure 6.6: Wald test results for testing Hy: 51 =1

Another way of estimating cointegrating equation is to estimate a vector error
correction model. To do this, open both forward and spot series as VAR system
(select both series and in the context menu choose Open/as VAR...). In the VAR
type box select Vector Error Correction and in the Cointegration tab click on
Intercept (no trend) in CE - no intercept in VAR. EViews’ output is given
in Figure 77.

As expected, the output shows that the stationary series is approximately
Siy1 — F; with the mean around zero. Deviations from the long-run equilibrium
equation have significant effect on changes of the spot exchange rate. Another
highly significant coefficient o, indicates a significant impact of AS; on AF; which
is not surprising. This underlies the relationships between the spot and forward rate
through the Covered Interest rate Parity condition (CIP).

The following subsection introduces an approach of testing for cointegration
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M8 Var: VARO1 Workfile: FP::Fp\

Wiew Object Freeze | |Estimate Impulse
Vector Error Correction Estimates
Wector Error Correction Estimates A
Date: 01/0409 Time: 11:19
Sample (adjusted): 1986M03 2008mM11
Included ohservations: 273 after adjustrments
Standard errars in () & tstatistics in []
Cointegrating Eq: CointEg1
F_SPT(-12 1.000000
FiDi-1) -1.457888
(0.15873)
[-9.18456]
[ 0.281331
(0.09670)
[2.90927]
Error Correction: Di{F_SPT) DiFD)
CaintEg1 0117131 -0.000z210
(0.04098) (0.00179)
[2.85850] [F0.11634]
Di{F_SPTi-10 -0.051451 0.988776
(0.07947) (0.00347)
[F0.64734] [284.866]
Di{FWD-10 0.0177490 -0.001048
(0.06160) (0.00269)
[0.28878] [-0.385820]
A

Figure 6.7: Output of the vector error correction model
when there exists more than one cointegrating relationship.

6.2.6 Tests for Cointegration: The Johansen’s Approach

An alternative approach to test for cointegration was introduced by Johansen (1988).
His approach allows to avoid some drawbacks existing in the Engle-Granger’s ap-
proach and test the number of cointegrating relations directly. The method is based
on the VAR model estimation.

Consider the VAR(p) model for the k x 1 vector Y,

Yt = Hlthl + ...+ Hth,p + U, t= 1, ...,T, (625)

where u; ~ IN(0,X).
Since levels of time series Y; might be non-stationary, it is better to transform

Equation (6.2.5) into a dynamic form, calling vector error correction model (VECM)

AYt = HYt,1 + FlAYt,1 + ...+ prlAtherl + U,

P
where I =11, + ...+ 1, — [, and 'y = — > I, k=1,..,p— 1L
j=k+1
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Let us assume that Y, contains non-stationary /(1) time series components.
Then in order to get a stationary error term wu;, II'Y;_; should also be stationary.
Therefore, ITY;_; must contain r < k cointegrating relations. If the VAR(p) process
has unit roots then II has reduced rank rank(Il) = r < k. Effectively, testing for
cointegration is equivalent to checking out the rank of the matrix II.

If IT has a full rank then all time series in Y are stationary, if the rank of II is
zero then there are no cointegrating relationships.

If 0 < rank (IT) = r < k. This implies that Y, is /(1) with r linearly indepen-
dent cointegrating vectors and k£ — r non-stationary vectors. Since II has rank r it

can be written as the product

where a and § are k X r matrices with rank(a) = rank(f) = r. The matrix

is a matrix of long-run coefficients and « represents the speed of adjustment to
disequilibrium. The VECM model becomes

AYt = Oéﬁ/Yt_l + FlYt—l + ...+ Fp—lAYt—p—‘rl + U, (626)

with 8Y,_1 ~ 1(0).
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Johansen’s methodology of obtaining estimates of a and [ is given below.

Johansen’s Methodology

Specify and estimate a VAR(p) model (6.2.5) for Y.

Determine the rank of II; the maximum likelihood estimate for 8 equals the
matrix of eigenvectors corresponding to the r largest eigenvalues of a k x k residual
matrix (see Hamilton (1994), Lutkepohl (1991), Harris (1995) for more detailed
description).

Construct likelihood ratio statistics for the number of cointegrating relation-
ships. Let estimated eigenvalues are A > Ap > ... >\, of the matrix IL.

Johansen’s likelihood ratio statistic tests the nested hypotheses

Hy:r<rgvs. Hi:r>nmrg

The likelihood ratio statistic, called the trace statistic, is given by

k
LRirace(ro) = =T Z log (1 — 5\1> )
i=ro+1

It checks whether the smallest k& —r eigenvalues are statistically different from zero.
If rank (IT) = ro then 5‘7“04-17 ey M\ should all be close to zero and LRyrace(ro) should
be small. In contrast, if rank (IT) > 7y then some of Ay11, .., \p will be nonzero (but

less than 1) and LRyqc.(ro) should be large.
We can also test Hy: r = 1o against Hy: rg = ro + 1 using so called the

mazimum eigenvalue statistic
LRWQSB(TO) =-T 1Og (1 - j‘ro-i-l) .

Critical values for the asymptotic distribution of LRyqce(70) and LR, 4. (7o) statistics
are tabulated in Osterwald-Lenum (1992) for k — ry = 1,..., 10.

In order to determine the number of cointegrating vectors, first test Hy: rg = 0
against the alternative Hy: ro > 0. If this null is not rejected then it is concluded
that there are no cointegrating vectors among the k variables in Y;. If Hy: rg = 0 is
rejected then there is at least one cointegrating vector. In this case we should test
Hy: rg < 1 against Hy: rg > 1. If this null is not rejected then we say that there
is only one cointegrating vector. If the null is rejected then there are at least two
cointegrating vectors. We test Hy: 7o < 2 and so on until the null hypothesis is not
rejected.

In a small samples tests are biased if asymptotic critical values are used without
a correction. Reinsel and Ahn (1992) and Reimars (1992) suggested small samples
bias correction by multiplying the test statistics with T — kp instead of T in the

construction of the likelihood ratio tests.
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6.2.7 Example in EViews: Johansen’s Approach

A very good example of a model with several cointegrating equations has been given
by Johansen and Juselius (1990) (1992) (see also Harris (1995)). They considered a
single equation approach to combine both Purchasing Power Parity and Uncovered
Interest rate Parity condition in one model.

In this model we expect two cointegrating equations between the UK consumer
price index P, the US consumer price index P*, USD/GBP exchange rate S and
two interest rates I and I* in the domestic and foreign countries respectively. If we
denote their log counterparts by the corresponding small letter, the theory suggest
that the following two relationships should hold in efficient markets with rational
investors: p; — p; = s; and As;q = iy — ;. The data is considered within the range
from January 1989 to November 2008 is given in PPPFP1.wfl file.

We create the log counterparts of the variables in the standard ways, like
series lcpi_uk=log(cpi_uk)

and so on. In order to check for cointegration we can either estimate VECM
(open 5 series as VAR model) or create a Group with the variables. Johansen and
Juselius (1990) included into the model seasonal dummy variables as well as crude oil
prices. We restrict ourself with only seasonal dummy for simplicity. We can create
dummy variables by using a command @expand, which allows to create a group of
dummy variables by expanding out one or more series into individual categories.
For this purposes we need first to create a variable indicating the quarter of the

observation. We do it in the following way
series quarter=0Qquarter(cpi__uk)

The command @Qquarter returns the quarter of the year in which the current ob-
servation begins. The second step is to create the dummy variables:

group dum=Qexpand(quarter)

EViews will create a new group object dum containing four dummy variables for
each of the quarter of the observation.

In both cases, either with VAR or with group objects, one can perform Jo-
hansen’s test procedure by clicking on View /Cointegration Test....

The dialog window will ask offer to specify the form of the VECM and the
cointegrating equation (with or without intercept or trend components). We choose
the first option with no trend and intercept to avoid perfect collinearity since we
include four dummy variables as exogenous in the model. In the box Exogenous
Variables enter the name of the dummy variables group dum.

In the box Lag Intervals for D(Endogenous) we set 1 4 — we include 4 lags
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Johansen Cointegration Test

Coinkegration Test Specification | YEC Restrictions

Deterministic trend assumption of test Exog watiables*
Assurme no deterministic trend in data: dum

(3 1) Mo intercept ar trend in CE or kest VAR

(2} Intercept (o trend) in CE - no intercept in YAR

Allow For linear deterministic trend in data: Lag intervals
(3) Intercept (notrend) in CE and test VAR
(4) Intercept and trend in CE - no trend in VAR

Lag spec for differenced
Allow for quadratic deterministic trend in data: endogenaous

()5) Intercept and trend in CE - linear tend in YAR
SUmMmMaty': Critical Values
(8) Summarize all 5 sets of assumptions {S}MHM

* Critical values may not be walid with exogenous

vatiables; do not includs C or Trend, O osterwald-Lenum

[ K ][ Cancel ]

Figure 6.8: Johansen’s Cointegration test dialog window

in the model. This is determined by EViews as optimal according to 3 criteria (first
estimate VAR with any of the lag specifications, check the optimality of the lag
order in View/Lag Structure/Lag Specification/Lag Length Criteria and
then re-estimate the VECM with the optimal lag order).
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var: LN

Workiile: PPPLP

[Freeze] [Estimate][Impulse][Resids]

[view][Prac]obect]

Johanzen Cointegration Test

Sample (adjusted); 1929006 200712

Included ohservations: 223 after adjustments

Trend assumption: Mo deterministic trend

Series: LIF_UK LIR_JS LSPOT LCPI_UK LCPI_US
Exogenous series: DUM

Warning: Critical valles assume no eX00enals Series
Lags interval {in first differences): 1 to 4

T, T 1T

Unrestricted Caintegration Rank Test {Trace)

Hypothesized Trace 0.o5
Mo, of CEig) Eigenvalue Statistic Critical Value Froh*
Maone * 01315876 52.80651 B0.061 41 0.0288
At most 0.07a536 31.34664 40174493 0.2881
Atmost 2 0.027939 13.831490 2427596 0.5512
Atmost 3 0.022044 7812787 12.32090 0.2770
Atmost 4 0.011334 2542014 412895906 01310
Trace testindicates 1 cointegrating eqnis) at the 0.04 level
* denotes rejection ofthe hypothesis atthe 0.04 level
Mackinnon-Haug-Michelis (1989) p-values
Linrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.0s
Mo, of CE(S) Eigenwalue Statistic Critical Walue Prab. =
Maone * 0131576 31.45888 3043961 0.0372
At most 0.075536 17.51473 2415921 0.3056
Atmost 2 0.027939 §.319117 17.79730 087
Atmost3 0.022044 4870768 11.22480 0.4814
Atmost 4 0.011334 25420149 4129906 01310
Mas-eigenvalue testindicates 1 cointegrating egnis) atthe 0.045 level
* denates rejection of the hypothesis at the 0.04 level
“*Mackinnon-Haug-Michelis (19599) p-values
Unrestricted Caintegrating Coefiicients (normalized by b*511*0=[):
LIF_LIK LIF_1S LSPOT LCPI_UK LCPI_US
2232559 0.525994 f.452674 -2.917368 2.5593593
52115949 -1 6B T 5.414865 -1.468834 -2.740802
3.2167049 -1.0759649 -5.465533 0.241471 0.724072
-1.402045 3158308 -2.804258 0444976 -1.82984F
2594429 -1.478534 -3.845306 -1.222705 0152110
Unrestricted Adjustment Coefficients (alpha):
DiLIR_UKD -0.001125 -0.004051 -0.002644 0.001682
DiLIR_LIS) -0.005073 -0.000671 -0.003628 -0.004836
DiLSPOT) -0.005088 -0.002292 0.001254 0.000830
DLCPI_ UKD 0.031334 0.001275 -0.0057498 -0.004144
DiLCRI_IS) -0.007114 0.024204 -0.006007 0.0038349

Figure 6.9: Output for Johansen’s Cointegration test

EViews produces results for various hypothesis tested, from no cointegration

r =

0) to to increasing number of cointegrating vectors (see Figure ?77). The

eigenvalues of matrix II is given in the second column. In the third column A e

statistic is higher than the corresponding critical value at 5% significance for the

first hypothesis. This means that we reject the null hypothesis of no cointegration.
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However, we cannot reject the hypothesis that there is at most one cointegrating
equation. On the basis of A, statistics (the second panel) it is also possible to
accept that there is only one cointegrating relationship. The following two panels
provide estimates of matrices 8 and « respectively.

Note the warning on the top of the output window that saying that critical
values assume no exogenous series. This means that we have to take into account
that the critical values we are using might not be fully correct as we included ex-
ogenous dummy variables in the model. This may give as an explanation why we
detected only one cointegrating equation instead of two which were expected. An-
other reason may be that the second relation based on the UIP condition involves
changes of exchange rate rather than levels considered in the VAR model.
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