Chapter 6

Multivariate Time Series Analysis

6.0.1 Introduction

Multivariate analysis investigates dependence and interactions among a set of variables in multi-values processes. One of the most powerful method of analyzing multivariate time series is the vector autoregression model. It is a natural extension of the univariate autoregressive model to the multivariate case.

In this chapter we cover concepts of VAR modelling, non-stationary multivariate time series and cointegration.

More detailed discussion can be found in Hamilton (1994), Harris (1995), Enders (2004), Tsay (2002), Zivot and Wang (2006).

6.1 Vector Autoregression Model

Let $\mathbf{Y}_t = (Y_{1,t}, Y_{2,t}, \dots, Y_{n,t})'$ denote an $k \times 1$ vector of time series variables. The basic vector autoregressive model of order p, VAR(p), is

$$\mathbf{Y}_{t} = \mathbf{c} + \Pi_{1} \mathbf{Y}_{t-1} + \Pi_{2} \mathbf{Y}_{t-2} + \dots + \Pi_{p} \mathbf{Y}_{t-p} + \mathbf{u}_{t}, \quad t = 1, \dots, T,$$
(6.1.1)

where Π_i are $k \times k$ matrices of coefficients, **c** is a $k \times 1$ vector of constants and \mathbf{u}_t is an $k \times 1$ unobservable zero mean white noise vector process with covariance matrix Σ .

If we consider a special case of two dimensional vector \mathbf{Y} , the VAR consists of two equation (also called a bivariate VAR)

$$\mathbf{Y}_{t} = \begin{pmatrix} Y_{1,t} \\ Y_{2,t} \end{pmatrix} = \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} + \begin{pmatrix} \pi_{11}^{1} & \pi_{12}^{1} \\ \pi_{21}^{1} & \pi_{22}^{1} \end{pmatrix} \begin{pmatrix} Y_{1,t-1} \\ Y_{2,t-1} \end{pmatrix} \\
+ \begin{pmatrix} \pi_{11}^{2} & \pi_{12}^{2} \\ \pi_{21}^{2} & \pi_{22}^{2} \end{pmatrix} \begin{pmatrix} Y_{1,t-2} \\ Y_{2,t-2} \end{pmatrix} + \begin{pmatrix} u_{1,t} \\ u_{2,t} \end{pmatrix}$$
(6.1.2)

with $cov(u_{1,t}, u_{2,s}) = \sigma_{12}$ for $t \neq s$.

As in the univariate case with AR processes, we can use the lag operator to represent VAR(p)

$$\Pi(L)\mathbf{Y}_t = \mathbf{c} + \mathbf{u}_t,$$

where $\Pi(L) = I_n - \Pi_1 L - ... - \Pi_p L^p$.

If we impose stationarity on \mathbf{Y}_t in (6.1.2), the unconditional expected value is given by

$$\mu = (I_n - \Pi_1 - \dots - \Pi_p)^{-1} \mathbf{c}.$$

Very often other deterministic terms or stochastic exogenous variables may be included into the VAR specification to represent. More general form of the VAR(p) model is

$$\mathbf{Y}_t = \Pi_1 \mathbf{Y}_{t-1} + \Pi_2 \mathbf{Y}_{t-2} + \dots + \Pi_p \mathbf{Y}_{t-p} + \Gamma \mathbf{X}_t + \mathbf{u}_t,$$

where \mathbf{X}_t represents an $m \times 1$ matrix of exogenous or deterministic variables, and Γ is a matrix of parameters.

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can neet this challenge!

The Power of Knowledge Engineering

Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge

6.1.1 Estimation of VARs and Inference on coefficients

Since the VAR(p) may be written as a system of equations with the same sets of explanatory variables, its coefficients can be efficiently and consistently estimated by estimating each of the components using the OLS method (see Hamilton (1994)). Under standard assumptions regarding the behavior of stationary and ergodic VAR models (see Hamilton (1994) the estimators of the coefficients are asymptotically normally distributed.

An element of $\hat{\Pi}_i$ is asymptotically normally distributed, so asymptotically valid t-tests on individual coefficients may be constructed in the usual way (see Chapter 2). More general linear hypotheses can also be tested using the Wald statistic.

Lag Length Selection A reasonable strategy how to determine the lag length of the VAR model is to fit VAR(p) models with different orders $p = 0, ..., p_{max}$ and choose the value of p which minimizes some model selection criteria. Model selection criteria for VAR(p) could be based on Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ) information criteria:

$$AIC(p) = \ln |\bar{\Sigma}(p)| + \frac{2}{T}pn^2$$
$$BIC(p) = \ln |\bar{\Sigma}(p)| + \frac{\ln T}{T}pn^2$$
$$HQ(p) = \ln |\bar{\Sigma}(p)| + \frac{2\ln \ln T}{T}pn^2$$

Forecasting We can use VAR model to forecast times series in a similar way to forecasting from a univariate AR model.

The one-period-ahead forecast based on information available at time T is

$$\mathbf{Y}_{T+1|T} = \mathbf{c} + \Pi_1 \mathbf{Y}_T + \dots + \Pi_p \mathbf{Y}_{T-p+1}$$

while h-step forecast is

$$\mathbf{Y}_{T+h|T} = \mathbf{c} + \Pi_1 \mathbf{Y}_T + \dots + \Pi_p \mathbf{Y}_{T-p+1},$$

where $\mathbf{Y}_{T+j|T} = \mathbf{Y}_{T+j}$ for j < 0. The h-step forecast errors may be expressed as

$$\mathbf{Y}_{T+h} - \mathbf{Y}_{T+h|T} = \sum_{s=0}^{h-1} \Psi_s \varepsilon_{T+h-s},$$

where the matrices Ψ_s are determined by recursive substitution

$$\Psi_s = \sum_{j=1}^{p-1} \Psi_{s-j} \Pi_j \tag{6.1.3}$$

Download free eBooks at bookboon.com

with $\Psi_0 = I_n$ and $\Pi_j = 0$ for j > p. The forecasts are unbiased since all of the forecast errors have expectation zero and the MSE matrix for $\mathbf{Y}_{t+h|T}$ is

$$\Sigma(h) = MSE\left(\mathbf{Y}_{T+h} - \mathbf{Y}_{T+h|T}\right) = \sum_{s=0}^{h-1} \Psi_s \Sigma \Psi'_s.$$

The h-step forecast in the case of estimated parameters is

$$\hat{\mathbf{Y}}_{T+h|T} = \hat{\Pi}_1 \hat{\mathbf{Y}}_{T+h-1|T} + \dots + \hat{\Pi}_p \hat{\mathbf{Y}}_{T+h-p|T},$$

where $\hat{\Pi}_i$ are the estimated matrices of parameters. The h-step forecast error is now

$$\mathbf{Y}_{T+h} - \hat{\mathbf{Y}}_{T+h|T} = \sum_{s=0}^{h-1} \Psi_s \varepsilon_{T+h-s} + \left(\mathbf{Y}_{t+h} - \hat{\mathbf{Y}}_{T+h|T} \right)$$

The estimate of the MSE matrix of the h-step forecast is then

$$\hat{\Sigma}(h) = \sum_{s=0}^{h-1} \hat{\Psi}_s \hat{\Sigma} \hat{\Psi}'_s$$

with $\Psi_s = \sum_{j=1}^s \hat{\Psi}_{s-j} \hat{\Pi}_j$.

6.1.2 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the VAR model provides information about a variable's or a group of variables' forecasting ability for other variables. The following intuitive notion of a variable's forecasting ability is due to Granger (1969). If a variable, or group of variables, Y_1 is found to be helpful for predicting another variable, or group of variables, Y_2 then Y_1 is said to Granger-cause Y_2 ; otherwise it is said to fail to Granger-cause Y_2 . Formally, Y_1 fails to Granger-cause Y_2 if for all s > 0 the MSE of a forecast of $Y_{2,t+s}$ based on $(Y_{2,t}, Y_{2,t-1}, ...)$ is the same as the MSE of a forecast of $Y_{2,t+s}$ based on $(Y_{2,t}, Y_{2,t-1}, ...)$ and $(Y_{1,t}, Y_{1,t-1}, ...)$. Note that the notion of Granger causality only implies forecasting ability.

In a bivariate VAR(p) model for $\mathbf{Y}_t = (Y_{1t}, Y_{2t})'$, Y_2 fails to Granger-cause Y_1 if all of the *p* VAR coefficient matrices $\Pi_1, ..., \Pi_p$ are lower triangular. That is, all of the coefficients on lagged values of Y_2 are zero in the equation for Y_1 . The *p* linear coefficient restrictions implied by Granger non-causality may be tested using the Wald statistic. Notice that if Y_2 fails to Granger-cause Y_1 and Y_1 fails to Grangercause Y_2 , then the VAR coefficient matrices $\Pi_1, ..., \Pi_p$ are diagonal.

Download free eBooks at bookboon.com

6.1.3 Impulse Response and Variance Decompositions

As in the univariate case, a VAR(p) process can be represented in the form of a vector moving average (VMA) process.

$$\mathbf{Y}_t = \boldsymbol{\mu} + \mathbf{u}_t + \Psi_1 \mathbf{u}_{t-1} + \Psi_2 \mathbf{u}_{t-2} + \dots,$$

where the $k \times k$ moving average matrices Ψ_s are determined recursively using (6.1.3).

The elements of coefficient matrices Ψ_s mean effects of \mathbf{u}_{t-s} shocks on \mathbf{Y}_t . That is, the (i, j)-th element, ψ_{ij}^s , of the matrix Ψ_s is interpreted as the impulse response

$$\frac{\partial Y_{i,t+s}}{\partial u_{j,t}} = \frac{\partial Y_{i,t}}{\partial u_{j,t-s}} = \psi_{ij}^s, \qquad i, j = 1, ..., T.$$

Sets of coefficients $\psi_{ij}(s) = \psi_{ij}^s$, i, j = 1, ..., T are called the **impulse response** functions.

It is possible to decompose the *h*-step-ahead forecast error variance into the proportions due to each shock u_{it} .

The forecast variance decomposition determines the proportion of the variation Y_{jt} due to the shock u_{jt} versus shocks of other variables u_{it} for $i \neq j$.

6.1.4 VAR in EViews

As an example of VAR estimation in EViews, consider two time series of returns of monthly IBM stocks and the market portfolio returns from Fama-French database (data is contained in IBM1.wf1).

There are several ways to estimate VAR model in EViews. The first one is through the main menu. Clicking on **View/Estimate VAR...** will open a dialog window for VAR model estimation.

AR Specification	2
Basics Cointegration VEC Rest	rictions
VAR Type ③ Unrestricted VAR ○ Vector Error Correction	Endogenous Variables ibm_ex_mkt_ex
Estimation Sample	Lag Intervals for Endogenous:
	Exogenous Variables
	OK Cancel

Figure 6.1: VAR model estimation dialog window

We choose **Unrestricted VAR** and in the **Endogenous Variables** box we have to specify the list of endogenous time series variables to be included in the VAR model. We consider two excess return series of the IBM stock IBM_ex and the market portfolio Mkt_ex.

In the Lag Intervals for Endogenous we have to specify the order of the model, that is interval of lags to be included in the model. If we want to build a model with only two lags, we write 1 2. This means, we include all lags beginning from the first one and ending with the lag of order 2. We do not specify any exogenous variables apart from the intercept term c.

Another way of calling the VAR estimation dialog window is to select both endogenous variables in the workfile and in the context menu (right button click) choose **Open/as VAR...**. The **Endogenous Variables** box will be filled in automatically.

Finally, we can estimate VAR model from the command line. There is a separate object, called **var**, to declare the VAR model. The estimation of the above mentioned example will look like

var ibm2.ls 1 2 ibm_ex mkt_ex

Here ibm2 is a name of the var-object which will be saved in the workfile, ls indicates the estimation method; in this case it is OLS estimation method of the unrestricted VAR model. Then, specifications of the lags pairs and the list of endogenous variables follow. If one wishes to include exogenous variables besides the intercept, it can be done by typing a symbol @ followed by a list of exogenous variables. For example,

var ibm2.ls 1 2 ibm ex mkt ex @ exvar1 exvar2

Click **OK** and EViews produces an estimation output for the specified VAR model.

🔲 Var: IBM2 🛛 Workfile:	IBM2::Data_i	bm_ff\	
View Proc Object Print Name	e Freeze Estin	nate Stats Impuls	eResids
Veci	or Autoregres	sion Estimates	
Vector Autoregression Esti Date: 01/03/09 Time: 11:5 Sample (adjusted): 1950M Included observations: 691 Standard errors in () & t-st	mates 4 03 2007M09 after adjustm atistics in []	ents	
	IBM_EX	MKT_EX	
IBM_EX(-1)	0.009969 (0.04688) [0.21267]	0.004618 (0.02849) [0.16208]	
IBM_EX(-2)	0.061395 (0.04689) [1.30944]	0.011865 (0.02850) [0.41630]	
MKT_EX(-1)	0.069736 (0.07747) [0.90017]	0.074885 (0.04709) [1.59023]	
MKT_EX(-2)	-0.198868 (0.07745) [-2.56754]	-0.044936 (0.04708) [-0.95443]	
с	0.008388 (0.00268) [3.12617]	0.001999 (0.00163) [1.22556]	
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.011416 0.005651 3.306425 1.980399 865.2686 -2.489923 -2.457086 0.008725 0.069622	0.007309 0.001520 1.221712 0.042201 1.262645 1209.253 -3.485538 -3.455700 0.002207 0.042233	
Determinant resid covarian Determinant resid covarian Log likelihood Akaike information criterion Schwarz criterion	ice (dof adj.) ice	5.64E-06 5.56E-06 2219.343 -6.394625 -6.328950	

Figure 6.2: Output for the VAR model estimation

Two columns correspond to two equation in the VAR model. The only significant coefficient besides the intercept one is at the second lag of the market portfolio

returns in the IBM equation. As expected, there is a unidirectional dynamic relationship from the market portfolio returns to the IBM returns, Thus, the IBM return is affected by the past movements of the market while past movements of IBM stock returns do not affect the market portfolio returns. The second equation (for market portfolio) is not significant as suggested by the F-statistics. This means that the the estimated model cannot explain variation in the market portfolio returns. This can happen because we possibly omitted some important exogenous variables or the order of the model is inappropriately selected. EViews provides a tool to choose the most suitable lag order. In the workfile menu choose **View/Lag Structure/Lag Length Criteria...** to determine the optimal model structure. In the appeared **Lag Specification** window we choose $p_{max} = 8$ (maximal lag order).

All criteria indicate that the optimal lag order of the model is 0. This means that the VAR model is inappropriate model to explain IBM and market portfolio returns. Indeed, we know from the CAPM that market portfolio returns affect the stock returns contemporaneously and are not in lag relationship. Thus, either additional exogenous factors should be found to include in the model or another structure of the model should be employed in this case.

View Proc VAR Lag (Endogenou Exogenou Date: 01/0 Sample: 1 Included c	Object) Print Na Object) Print Na Dider Selection I us variables: IE s variables: C 13/09 Time: 12: 950M01 2007M ubservations: 68	r IDM2: IDM2 me]Freeze) Esti Criteria M_EX MKT_EX 27 09 15	nate Stats Impu	<u>Ilse Resids</u>		
Lag	LogL	LR	FPE	AIC	SC	HQ
0	2194.622	NA*	5.69e-06*	-6.401817*	-6.388593*	-6.396700*
1	2196.775	4.287075	5.72e-06	-6.396424	-6.356751	-6.381073
2	2199.864	6.131986	5.73e-06	-6.393763	-6.327640	-6.368177
3	2201.623	3.481326	5.77e-06	-6.387219	-6.294647	-6.351399
4	2203.219	3.150236	5.81e-06	-6.380200	-6.261179	-6.334146
5	2205.939	5.354029	5.83e-06	-6.376465	-6.230995	-6.320176
6	2206.141	0.395622	5.90e-06	-6.365375	-6.193455	-6.298852
7	2206.432	0.568871	5.96e-06	-6.354545	-6.156177	-6.277787
8	2207.274	1.642798	6.02e-06	-6.345326	-6.120508	-6.258334
7 8 * indicate LR: seque FPE: Fina AIC: Akaik SC: Schw	s lag order sele ential modified l prediction cro arz information cr	0.558871 1.642798 cted by the crite .R test statistic r riterion criterion	5.96e-06 6.02e-06 rion (each test at 59	-6.354545 -6.345326 6 level)	-6.120508	-6.258334

Figure 6.3: Output for the lag length selection procedure

Lag selection can be programmed manually in the same way as it is done for ARMA model (see Chapter 3). There are some command references given below which can be used to assess various statistic values in the VAR analysis in EViews.

6.2 Cointegration

The assumption of stationary of regressors and regressands is crucial for the properties and the OLS estimators discussed in Chapter 2. In this case, the usual statistical results for the linear regression model and consistency of estimators hold. However, when variables are non-stationary then the usual statistical results may not hold.

6.2.1 Spurious Regression

If there are trends in the data (deterministic or stochastic) this can lead to a spurious results when running OLS regression. This is because time trend will dominate other stationary variables and the OLS estimators will pick up covariances generated by time trends only. While the effects of deterministic trends can be removed from the regression by either including time trend regressor or simply de-trending variables, non-stationary variables with stochastic trends may lead to invalid inferences.

Download free eBooks at bookboon.com

Data Member	Description
@eqlogl(k)	log likelihood for equation k
@eqncoef(k)	number of estimated coefficients in equation k
@eqregobs(k)	number of observations in equation k
@meandep(k)	mean of the dependent variable in equation k
@r2(k)	R-squared statistic for equation k
@rbar2(k)	adjusted R-squared statistic for equation k
@sddep(k)	standard deviation of dependent variable in equation k
@se(k)	standard error of the regression in equation k
@ssr(k)	sum of squared residuals in equation k
@aic	Akaike information criterion for the system
@detresid	determinant of the residual covariance matrix
@hq	Hannan-Quinn information criterion for the system
@logl	log likelihood for system
@ncoefs	total number of estimated coefficients in the var
@neqn	number of equations
@regobs	number of observations in the var
@sc	Schwarz information criterion for the system
@svarcvgtype	Returns an integer indicating the convergence type of the structural decomposi- tion estimation: 0 (convergence achieved), 2 (failure to improve), 3 (maximum iterations reached), 4 (no convergence-structural decomposition not estimated)
@svaroverid	over-identification LR statistic from structural factorization
@totalobs	sum of "@eqregobs" from each equation ("@regobs*@neqn")
@coefmat	coefficient matrix (as displayed in output table)
@coefse	matrix of coefficient standard errors (corresponding to the output table)
@impfact	factorization matrix used in last impulse response view
@lrrsp	accumulated long-run responses from last impulse response view
@lrrspse	standard errors of accumulated long-run responses
@residcov	covariance matrix of the residuals
@svaramat	estimated A matrix for structural factorization
@svarbmat	estimated B matrix for structural factorization
@svarcovab	covariance matrix of stacked A and B matrix for structural factorization
@svarrcov	restricted residual covariance matrix from structural factorization

Var Data Members

Consider, for example,

$$Y_{1,t} = Y_{1,t-1} + u_{1,t}, \qquad u_{1,t} \sim IN(0,1)$$

$$Y_{2,t} = Y_{2,t-1} + u_{2,t}, \qquad u_{2,t} \sim IN(0,1)$$

Both of the variables are non-stationary and independent from each other. In the regression $Y_{1,t} = \beta_0 + \beta_1 Y_{2,t} + \varepsilon_t$, the value of true slope parameter $\beta_1 = 0$. Thus, the value of the OLS estimate $\hat{\beta}_1$ should be insignificant. The actual estimations produce high R^2 coefficients and highly significant β_1 .

The problem with the spurious regression is that t- and F-statistics do not follow standard distributions. As shown in Phillips (1986), $\hat{\beta}_1$ does not converge in

probability to zero, R^2 converges to unity as $T \to \infty$ so that the model will appear to fit well even though it is misspecified.

Regression with I(1) data only makes sense when the data are *cointegrated*.

6.2.2 Cointegration

Let $\mathbf{Y}_t = (Y_{1t}, ..., Y_{kt})'$ denote an $k \times 1$ vector of I(1) time series. \mathbf{Y}_t is cointegrated if there exists an $k \times 1$ vector $\beta = (\beta_1, ..., \beta_k)'$ such that

$$\mathbf{Z}_{t} = \beta' \mathbf{Y}_{t} = \beta_{1} Y_{1t} + \dots + \beta_{k} Y_{kt} \sim I(0).$$
(6.2.1)

The non-stationary time series in \mathbf{Y}_t are cointegrated if there is a linear combination of them that is stationary. If some elements of β are equal to zero then only the subset of the time series in \mathbf{Y}_t with non-zero coefficients is cointegrated.

There may be different vectors β such that $\mathbf{Z}_t = \beta' \mathbf{Y}_t$ is stationary. In general, there can be 0 < r < k linearly independent cointegrating vectors. All cointegrating vectors form a *cointegrating matrix* **B**. This matrix is again not unique. Some normalization assumption is required to eliminate ambiguity from the definition.

Download free eBooks at bookboon.com

Click on the ad to read more

A typical normalization is

$$\beta = (1, -\beta_2, \dots, -\beta_k)'$$

so that the cointegration relationship may be expressed as

$$\mathbf{Z}_t = \beta' \mathbf{Y}_t = Y_{1t} - \beta_2 Y_{2t} - \dots - \beta_k Y_{kt} \sim I(0).$$

6.2.3 Error Correction Models

Engle and Granger (1987) state that if a bivariate I(1) vector $\mathbf{Y}_t = (Y_{1t}, Y_{2t})'$ is cointegrated with cointegrating vector $\beta = (1, -\beta_2)'$ then there exists an error correction model (ECM) of the form

$$\Delta Y_{1t} = \delta_1 + \phi_1 (Y_{1,t-1} - \beta_1 Y_{2,t-1} + \sum_{j=1}^{j} \alpha_{11}^j \Delta Y_{1,t-j} + \sum_{s=1}^{j} \alpha_{12}^j \Delta Y_{2,t-j} + \varepsilon_{1t} \quad (6.2.2)$$

$$\Delta Y_{2t} = \delta_2 + \phi_2 (Y_{1,t-1} - \beta_2 Y_{2,t-1} + \sum_{j=1}^{j} \alpha_{21}^j \Delta Y_{1,t-j} + \sum_{s=1}^{j} \alpha_{22}^j \Delta Y_{2,t-j} + \varepsilon_{2t} \quad (6.2.3)$$

that describes the long-term relations of Y_{1t} and Y_{2t} . If both time series are I(1) but are cointegrated (have a long-term stationary relationship), there is a force that brings the error term back towards zero. If the cointegrating parameter β_1 or β_2 is known, the model can be estimated by the OLS method.

6.2.4 Tests for Cointegration: The Engle-Granger Approach

Engle and Granger (1987) show that if there is a cointegrating vector, a simple two-step residual-based testing procedure can be employed to test for cointegration. In this case, a long-run equilibrium relationship between components of \mathbf{Y}_t can be estimated by running

$$Y_{1,t} = \beta \mathbf{Y}_{2,t} + u_t, \tag{6.2.4}$$

where $\mathbf{Y}_{2,t} = (Y_{2,t}, ..., Y_{k,t})'$ is an $(k-1) \times 1$ vector. To test the null hypothesis that \mathbf{Y}_t is not cointegrated, we should test whether the residuals $\hat{u}_t \sim I(1)$ against the alternative $\hat{u}_t \sim I(0)$. This can be done by any of the tests for unit roots. The most commonly used is the augmented Dickey-Fuller test with the constant term and without the trend term. Critical values for this test is tabulated in Phillips and Ouliaris (1990) or MacKinnon (1996).

Potential problems with Engle-Granger approach is that the cointegrating vector will not involve $Y_{1,t}$ component. In this case the cointegrating vector will not be consistently estimated from the OLS regression leading to spurious results. Also, if

there are more than one cointegrating relation, the Engle-Granger approach cannot detect all of them.

Estimation of the static model (6.2.4) is equivalent to omitting the short-term components from the error-correction model (6.2.3). If this results for autocorrelation in residuals, although the results will still hold asymptotically, it might create a severe bias in finite samples. Because of this, it makes sense to estimate the full dynamic model. Since all variables in the ECM are I(0), the model can be consistently estimated using the OLS method. This approach leads to a better performance as it does not push the short-term dynamics into residuals.

6.2.5 Example in EViews: Engle-Granger Approach

Consider as an example the Forward Premium Puzzle. Due to rational expectation hypothesis, forward rate should be unbiased predictor of future spot exchange rate. This means that in the regression of levels of spot S_{t+1} on forward rate F_t the intercept coefficient should be equal to zero and the slope coefficient should be equal to unity.

Consider monthly data of the USG/GBP spot and forward exchange rate for the period from January 1986 to November 2008 (the data is in FPP.wf1 file).

Unit roots are often found in in levels of spot and forward exchange rates. Augmented Dickey-Fuller test statistic values are -2.567 and -2.688 which are high enough to fail rejecting the null hypothesis at 5% significance level. Phillips-Perron test produces test statistic which value os on the border of the rejection region. Thus, if two series are not cointegrated, there is a danger to obtain spurious results from the OLS regression. However, if we look at plots of the two series we can see that they co-move together very closely, so we can expect existence of cointegrating relation between them.

Figure 6.4: Plots of forward and future spot USD/GBP exchange rates

To perform Engle-Granger test for cointegration let us run OLS regression $S_{t+1} = \beta F_t + u_t$ in EViews and generate residuals from the model.

```
ls f_spt fwd
```

```
series resid1=resid
```

The second step is to test the residuals for stationarity. Augmented Dickey-Fuller test strongly rejects the presence of a unit root in the residual series in the favour of stationarity hypothesis.

Similar results are generated by other testing procedures. Thus, we conclude that future spot and forward exchange rates are cointegrated. Hence, the OLS results are valid for the regression in levels as well. In this case the slope coefficient is equal to 0.957 which is positive and close to unity. However, we reject the null hypothesis $H_0: \beta_1 = 1$ with the Wald test.

Thus, the forward premium puzzle also exists even for the model in levels for the exchange rates.

Series: RESID1 V	Vorkfile: FP::Fp\			
View Proc Object Prope	rties Print Name Freez	e Sample Genr She	et Graph Sta	its Ident
Augm	ented Dickey-Fuller Un	it Root Test on RES	iD1	
Null Hypothesis: RES Exogenous: Constant Lag Length: 0 (Automa	ID1 has a unit root atic based on SIC, MAX	LAG=15)		
		t-Statistic	Prob.*	
Augmented Dickey-Fu	ller test statistic	-14.51667	0.0000	
Test critical values:	1% level	-3.454085		
	5% level	-2.871883		
	10% level	-2.572354		
*MacKinnon (1996) or	ne-sided p-values.			~

Figure 6.5: Results of Augmented Dickey-Fuller test for residuals from the longrun equilibrium relationship

Equation: EQO	1 Workfile: Fl	P::Fp\			
View Proc Object P	rint Name Freeze	Estimate For	ecast Stats R	esids	
Wald Test: Equation: EQ01					
Test Statistic	Value	df	Probability		
F-statistic Chi-square	7485.758 7485.758	(1, 273) 1	0.0000 0.0000		
Null Hypothesis Summary:					
Normalized Restriction (= 0)		Value	Std. Err.		
-1 + C(2)		-0.977113	0.011293		
Restrictions are lin	ear in coefficient	s.			

Figure 6.6: Wald test results for testing H_0 : $\beta_1 = 1$

Another way of estimating cointegrating equation is to estimate a vector error correction model. To do this, open both forward and spot series as VAR system (select both series and in the context menu choose **Open/as VAR...**). In the VAR type box select **Vector Error Correction** and in the **Cointegration** tab click on **Intercept (no trend) in CE - no intercept in VAR**. EViews' output is given in Figure ??.

As expected, the output shows that the stationary series is approximately $S_{t+1} - F_t$ with the mean around zero. Deviations from the long-run equilibrium equation have significant effect on changes of the spot exchange rate. Another highly significant coefficient α_{22}^1 indicates a significant impact of ΔS_t on ΔF_t which is not surprising. This underlies the relationships between the spot and forward rate through the Covered Interest rate Parity condition (CIP).

The following subsection introduces an approach of testing for cointegration

🔲 Var: VAR01 🛛 Workf	ile: FP::Fp\		
View Proc Object Print N	ame Freeze Estim	nate Stats Impu	lse Resids
Vector E	rror Correction E	stimates	
Vector Error Correction 6 Date: 01/04/09 Time: 1 Sample (adjusted): 198 Included observations: 2 Standard errors in () & t	Estimates 1:19 6M03 2008M11 273 after adjustme -statistics in []	ents	_
Cointegrating Eq:	CointEq1		
F_SPT(-1)	1.000000		-
FWD(-1)	-1.457888 (0.15873) [-9.18456]		
с	0.281331 (0.09670) [2.90927]		
Error Correction:	D(F_SPT)	D(FWD)	
CointEq1	0.117131 (0.04098) [2.85850]	-0.000210 (0.00179) [-0.11695]	-
D(F_SPT(-1))	-0.051491 (0.07947) [-0.64794]	0.989776 (0.00347) [284.866]	
D(FWD(-1))	0.017790 (0.06160) [0.28878]	-0.001048 (0.00269) [-0.38920]	

Figure 6.7: Output of the vector error correction model

when there exists more than one cointegrating relationship.

6.2.6 Tests for Cointegration: The Johansen's Approach

An alternative approach to test for cointegration was introduced by Johansen (1988). His approach allows to avoid some drawbacks existing in the Engle-Granger's approach and test the number of cointegrating relations directly. The method is based on the VAR model estimation.

Consider the VAR(p) model for the $k \times 1$ vector \mathbf{Y}_t

$$\mathbf{Y}_{t} = \Pi_{1} \mathbf{Y}_{t-1} + \dots + \Pi_{p} \mathbf{Y}_{t-p} + \mathbf{u}_{t}, \qquad t = 1, \dots, T,$$
(6.2.5)

where $\mathbf{u}_t \sim IN(0, \Sigma)$.

Since levels of time series \mathbf{Y}_t might be non-stationary, it is better to transform Equation (6.2.5) into a dynamic form, calling vector error correction model (VECM)

$$\Delta \mathbf{Y}_t = \Pi \mathbf{Y}_{t-1} + \Gamma_1 \Delta \mathbf{Y}_{t-1} + \dots + \Gamma_{p-1} \Delta \mathbf{Y}_{t-p+1} + \mathbf{u}_t,$$

where $\Pi = \Pi_1 + ... + \Pi_p - I_n$ and $\Gamma_k = -\sum_{j=k+1}^p \Pi_j, k = 1, ..., p - 1.$

Let us assume that \mathbf{Y}_t contains non-stationary I(1) time series components. Then in order to get a stationary error term \mathbf{u}_t , $\Pi \mathbf{Y}_{t-1}$ should also be stationary. Therefore, $\Pi \mathbf{Y}_{t-1}$ must contain r < k cointegrating relations. If the VAR(p) process has unit roots then Π has reduced rank rank $(\Pi) = r < k$. Effectively, testing for cointegration is equivalent to checking out the rank of the matrix Π .

If Π has a full rank then all time series in **Y** are stationary, if the rank of Π is zero then there are no cointegrating relationships.

If $0 < \operatorname{rank}(\Pi) = r < k$. This implies that \mathbf{Y}_t is I(1) with r linearly independent cointegrating vectors and k - r non-stationary vectors. Since Π has rank r it can be written as the product

$$\prod_{(k \times k)} = \underset{(k \times r)_{(r \times k)}}{\alpha} \beta',$$

where α and β are $k \times r$ matrices with rank $(\alpha) = \operatorname{rank}(\beta) = r$. The matrix β is a matrix of long-run coefficients and α represents the speed of adjustment to disequilibrium. The VECM model becomes

$$\Delta \mathbf{Y}_t = \alpha \beta' \mathbf{Y}_{t-1} + \Gamma_1 \mathbf{Y}_{t-1} + \dots + \Gamma_{p-1} \Delta \mathbf{Y}_{t-p+1} + \mathbf{u}_t, \qquad (6.2.6)$$

with $\beta' \mathbf{Y}_{t-1} \sim I(0)$.

Download free eBooks at bookboon.com

Click on the ad to read more

Johansen's methodology of obtaining estimates of α and β is given below.

Johansen's Methodology

Specify and estimate a VAR(p) model (6.2.5) for \mathbf{Y}_t .

Determine the rank of Π ; the maximum likelihood estimate for β equals the matrix of eigenvectors corresponding to the *r* largest eigenvalues of a $k \times k$ residual matrix (see Hamilton (1994), Lutkepohl (1991), Harris (1995) for more detailed description).

Construct likelihood ratio statistics for the number of cointegrating relationships. Let estimated eigenvalues are $\hat{\lambda}_1 > \hat{\lambda}_2 > ... > \hat{\lambda}_k$ of the matrix Π .

Johansen's likelihood ratio statistic tests the nested hypotheses

$$H_0: r \le r_0$$
 vs. $H_1: r > r_0$

The likelihood ratio statistic, called the *trace statistic*, is given by

$$LR_{trace}(r_0) = -T \sum_{i=r_0+1}^k \log\left(1 - \hat{\lambda}_i\right).$$

It checks whether the smallest $k - r_0$ eigenvalues are statistically different from zero. If rank $(\Pi) = r_0$ then $\hat{\lambda}_{r_0+1}, ..., \hat{\lambda}_k$ should all be close to zero and $LR_{trace}(r_0)$ should be small. In contrast, if rank $(\Pi) > r_0$ then some of $\hat{\lambda}_{r_0+1}, ..., \hat{\lambda}_k$ will be nonzero (but less than 1) and $LR_{trace}(r_0)$ should be large.

We can also test $H_0: r = r_0$ against $H_1: r_0 = r_0 + 1$ using so called the maximum eigenvalue statistic

$$LR_{max}(r_0) = -T \log \left(1 - \hat{\lambda}_{r_0+1}\right).$$

Critical values for the asymptotic distribution of $LR_{trace}(r_0)$ and $LR_{max}(r_0)$ statistics are tabulated in Osterwald-Lenum (1992) for $k - r_0 = 1, ..., 10$.

In order to determine the number of cointegrating vectors, first test $H_0: r_0 = 0$ against the alternative $H_1: r_0 > 0$. If this null is not rejected then it is concluded that there are no cointegrating vectors among the k variables in \mathbf{Y}_t . If $H_0: r_0 = 0$ is rejected then there is at least one cointegrating vector. In this case we should test $H_0: r_0 \leq 1$ against $H_1: r_0 > 1$. If this null is not rejected then we say that there is only one cointegrating vector. If the null is rejected then there are at least two cointegrating vectors. We test $H_0: r_0 \leq 2$ and so on until the null hypothesis is not rejected.

In a small samples tests are biased if asymptotic critical values are used without a correction. Reinsel and Ahn (1992) and Reimars (1992) suggested small samples bias correction by multiplying the test statistics with T - kp instead of T in the construction of the likelihood ratio tests.

6.2.7 Example in EViews: Johansen's Approach

A very good example of a model with several cointegrating equations has been given by Johansen and Juselius (1990) (1992) (see also Harris (1995)). They considered a single equation approach to combine both Purchasing Power Parity and Uncovered Interest rate Parity condition in one model.

In this model we expect two cointegrating equations between the UK consumer price index P, the US consumer price index P^* , USD/GBP exchange rate S and two interest rates I and I^* in the domestic and foreign countries respectively. If we denote their log counterparts by the corresponding small letter, the theory suggest that the following two relationships should hold in efficient markets with rational investors: $p_t - p_t^* = s_t$ and $\Delta s_{t+1} = i_t - i_t^*$. The data is considered within the range from January 1989 to November 2008 is given in PPPFP1.wf1 file.

We create the log counterparts of the variables in the standard ways, like

series lcpi_uk=log(cpi_uk)

and so on. In order to check for cointegration we can either estimate VECM (open 5 series as VAR model) or create a Group with the variables. Johansen and Juselius (1990) included into the model seasonal dummy variables as well as crude oil prices. We restrict ourself with only seasonal dummy for simplicity. We can create dummy variables by using a command **@expand**, which allows to create a group of dummy variables by expanding out one or more series into individual categories. For this purposes we need first to create a variable indicating the quarter of the observation. We do it in the following way

```
series quarter=@quarter(cpi uk)
```

The command @quarter returns the quarter of the year in which the current observation begins. The second step is to create the dummy variables:

```
group dum=@expand(quarter)
```

EViews will create a new group object dum containing four dummy variables for each of the quarter of the observation.

In both cases, either with VAR or with group objects, one can perform Johansen's test procedure by clicking on **View/Cointegration Test...**.

The dialog window will ask offer to specify the form of the VECM and the cointegrating equation (with or without intercept or trend components). We choose the first option with no trend and intercept to avoid perfect collinearity since we include four dummy variables as exogenous in the model. In the box **Exogenous Variables** enter the name of the dummy variables group dum.

In the box Lag Intervals for D(Endogenous) we set 14 - we include 4 lags

Download free eBooks at bookboon.com

integration Test Specification VEC Restrictions	
Deterministic trend assumption of test	Exog variables*
Assume no deterministic trend in data: 1) No intercept or trend in CE or test VAR 2) Intercept (no trend) in CE - no intercept in VAR 	dum
Allow for linear deterministic trend in data:	Lag intervals
3) Intercept (no trend) in CE and test VAR	14
4) Intercept and trend in CE - no trend in VAR Allow for quadratic deterministic trend in data: 5) Intercept and trend in CE - linear tend in VAR	Lag spec for differenced endogenous
Summary:	Critical Values
○ 6) Summarize all 5 sets of assumptions	MHM Size 0.05
* Critical values may not be valid with exogenous variables; do not include C or Trend.	Osterwald-Lenum

Figure 6.8: Johansen's Cointegration test dialog window

in the model. This is determined by EViews as optimal according to 3 criteria (first estimate VAR with any of the lag specifications, check the optimality of the lag order in **View/Lag Structure/Lag Specification/Lag Length Criteria** and then re-estimate the VECM with the optimal lag order).

Click on the ad to read more

View Proc Object Print, Name Freeze Estimate Stats Impulse Resids Johansen Cointegration Test Johansen Cointegration Test Sample (adjusted): 1989M06 2007M12 Included observations: 223 after adjustments Included observations: 223 after adjustments Trend assumption: No deterministic trend Series: LIR_UK LIR_US LSPOT LCPI_UK LCPI_US Exogenous series: Exogenous series: DUM Warning: Critical Values assume no exogenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 Non of CE(s) Eigenvalue Statistic Critical Value Prob.*** None * 0.0175536 31.34664 40.17433 0.2881 At most 1 0.075536 31.34664 40.17433 0.2881 At most 2 0.021939 1.383190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.3100 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ***MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating	War: UNIIIL	ED Workfile: I	PPPFP1::Pppt	p1V		<u>ک</u> ا
Johansen Cointegration Test Date: 01703/05 TITLE: 151-17 Included observations: 223 after adjustments Trend assumption: No deterministic trend Series: LIR_UK LIR_US LSPOT LCPL_UK LCPL_US Exogenous series: DUM Warning: Critical values assume no exogenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.022044 7.512787 12.32090 0.2770 At most 3 0.022044 7.512787 12.32090 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** ** 4enotes rejection of the hypothesis at the 0.05 level ** **MacKinnon-Haug-Michellis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** None * 0.131576 31.45988 30.43961 0.372 At most 1 0.075536 17.51473 24.15921 0.3056 No of CE(s) Eigenval	View Proc Object Print Name Freeze Estimate Stats Impulse Resids					
Date: Overlag: Overlag: <t< th=""><th></th><th>Joha</th><th>nsen Cointegra</th><th>tion Test</th><th></th><th></th></t<>		Joha	nsen Cointegra	tion Test		
Discrete Statistic Statistic Included observations: 223 after adjustments Trend assumption: No deterministic trend Series: LLP, UK LR, US LEPOT LCPL_UK LCPL_US Exogenous series: DUM Warning: Critical values assume no exogenous series Lags interval (in first differences): 11 o 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17439 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 1 0.075536 31.4664 40.17439 0.2881 At most 1 0.017536 31.8190 24.27596 0.5512 At most 1 0.017334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** ** Mackinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No.3722	Sample (adjuste	ന്നം. 13.11 പ്രവേദം പാന	17M12			~
Trend assumption: No deterministic trend Series: LIR_UK LIR_US LSPOT LCPI_UK LCPI_US Exogenous series: DUM Warning: Critical values assume no exogenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized No. of CE(s) Trace Eigenvalue 0.05 Statistic None * 0.131576 62.80651 60.06141 0.0288 At most 1 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 At most 2 0.027939 13.83190 24.27596 0.5512 At most 4 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level **denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Non of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.07536 Non of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.07536 Non of CE(s) Eigenvalue Statistic Critical Value Prob.** None *	Included observa	ations: 223 after a	adjustments			
Series: LR_UK LIR_US LSPOT LCPI_UK LCPI_US Exogenous series: DUM Warning: Critical values assume no exogenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace None * 0.131576 62.80651 60.06141 0.075536 31.34664 At most 1 0.075536 At most 2 0.027939 At most 3 0.022044 7.512787 12.32090 At most 3 0.022044 7.512787 12.32090 Outrast 0.05 At most 4 0.011334 2.542019 4.129906 Vanote * 0.05 Inreact test indicates 1 cointegrating eqn(s) at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.037239 6.319117 17.79730 0.8721	Trend assumption	on: No determinis	stic trend			
Exogenous series: DUM Warning: Critical values assume no exogenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level **MackInnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level **MackInnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I): Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I): Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I): Unrestricted Cointegrating Coefficients (alt4865 - 1.46834 - 2.740902 3.216709 - 1.075969 - 5.465533 0.241471 0.724072 -1.402045 3.158308 - 2.904258 0.444476 - 1.929946 2.591429 - 1.478534 - 8.945306 - 1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.003628 -0.004836 D(LSPOT) -0.005073 -0.00671 -0.003628 -0.004836 D(LSPOT) -0.005073 -0.00671 -0.003628 -0.004836 D(LSPOT) -0.005073 -0.00671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.009300 D(LCPL_UK) 0.031334 0.001275 -0.00578 -0.004144 D(LCPL_UK) -0.001125 -0.004051 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.009300 D(LCPL_UK) -0.001125 -0.004051 -0.003628 -0.004368 D(LSPOT) -0.005088 -0.002292 0.001254 0.009309	Series: LIR_UK I	LIR_US LSPOT L	.CPI_UK LCPI_U	JS		
Warming, Childar Values assume to Excigenous series Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2281 At most 2 0.02044 7.512787 12.32090 0.2770 At most 3 0.022044 7.512787 12.32090 0.1310 Trace test indicates 1 cointegrating equ(s) at the 0.05 level *** *** ** denotes rejection of the hypothesis at the 0.05 level *** Mone * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 3 0.022044 4.970768 12.55939	Exogenous serie Warning: Critical	s: DUM values assume		orioe		
Unrestricted Cointegration Rank Test (Trace) Hypothesized No. of CE(s) Eigenvalue Trace Statistic 0.05 Critical Value Prob.** None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level * denotes rejection of	Lags interval (in	first differences):	1 to 4	eneo		
Hypothesized No. of CE(s) Eigenvalue Eigenvalue Trace Statistic 0.05 Critical Value Prob.** None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** ** ** ** Whypothesized Max-Eigen 0.05 0.05 0.05 0.056 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310	Unrestricted Coil	ntegration Rank	Test (Trace)			
Hypothesized Lize U.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level **denotes rejection of the hypothesis at the 0.05 level **denotes rejection of the hypothesis at the 0.05 level **MackInnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.07536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4						-
None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** Hypothesized Max-Eigen 0.05 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 3 0.02104768 11.22480 0.4814 At most 3 0.021044 4.970768 11.22480 0.4814 At most 3 0.022044 4.970758 11.22480 0.4814 <td>No of CE(s)</td> <td>Figenvalue</td> <td>I race Statistic</td> <td>U.U5 Critical Value</td> <td>Prob **</td> <td></td>	No of CE(s)	Figenvalue	I race Statistic	U.U5 Critical Value	Prob **	
None * 0.131576 62.80651 60.06141 0.0288 At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** ** * denotes rejection of the hypothesis at the 0.05 level ** ** Where the integration Rank Test (Maximum Eigenvalue) Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.022044 4.970768 11.22480 0.4814 At most 3 0.022044 4.970768 11.22480 0.4814 At m		Elgenvalue	otatistic		FTOD.	=
At most 1 0.075536 31.34664 40.17493 0.2881 At most 2 0.027939 13.83190 24.27596 0.5512 At most 3 0.021044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** ** ** * denotes rejection of the hypothesis at the 0.05 level ** ** **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 3 0.021045 4.970768 11.29406 0.1310 * Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * denot	None *	0.131576	62.80651	60.06141	0.0288	
At most 2 0.02/939 13.83190 24.27596 0.5512 At most 3 0.022044 7.512787 12.32090 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** Hypothesized Max-Eigen 0.05 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level	At most 1	0.075536	31.34664	40.17493	0.2881	
At most 4 0.021244 7.312767 12.32930 0.2770 At most 4 0.011334 2.542019 4.129906 0.1310 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Prob.** Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.022044 4.970768 11.22480 0.4814 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I): Unrestricted Cointegrating Coefficients (alpha): 2.232559 <td>At most 2</td> <td>0.027939</td> <td>13.83190</td> <td>24.27596</td> <td>0.5512</td> <td></td>	At most 2	0.027939	13.83190	24.27596	0.5512	
Interest Description Description Description Trace test indicates 1 cointegrating eqn(s) at the 0.05 level ** * **Mackinnon-Haug-Michelis (1999) p-values * Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 Non of CE(s) Eigenvalue Statistic Critical Value None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level ** * Mackinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I): IIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 3.168709	At most 4	0.022044	2.542019	4 1 2 9 9 0 6	0.2770	
Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * denotes rejection of the hypothesis at the 0.05 level * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIP_US LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.32659 0.525994 <td></td> <td>0.011001</td> <td>2.012010</td> <td></td> <td>0.1010</td> <td>=</td>		0.011001	2.012010		0.1010	=
MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob. None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPI_UK) 0.31334 0.001275 -0.00578 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003339	Trace test indica	ates 1 cointegrati	ng eqn(s) at the	0.05 level		
Mackinnon-Haug-Michells (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michellis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): UR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468934 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3	* denotes rejecti	ion of the hypothe	esis at the 0.05 l	evel		
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized No. of CE(s) Eigenvalue Max-Eigen Statistic 0.05 Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468934 -2.740002 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976	**MackInnon-Ha	aug-Michelis (199	99) p-values			
Hypothesized No. of CE(s) Eigenvalue Max-Eigen Statistic 0.05 Critical Value Prob.*** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.32559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 </td <td>Unrestricted Coi</td> <td>ntegration Rank</td> <td>Test (Maximum</td> <td>Eigenvalue)</td> <td></td> <td>_</td>	Unrestricted Coi	ntegration Rank	Test (Maximum	Eigenvalue)		_
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * * denotes rejection of the hypothesis at the 0.05 level * * * * 1005 100000000000000000000000000000000	Hypothesized		Max-Eigen	0.05		
None * 0.131576 31.45988 30.43961 0.0372 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * denotes rejection of the hypothesis at the 0.05 level * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.569393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.168308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222	No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**	
None 0.13130 0.14300 0.44300 At most 1 0.075536 17.51473 24.15921 0.3056 At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * denotes rejection of the hypothesis at the 0.05 level * * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.168308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110	None *	0.131576	31 / 5988	30 // 3061	0.0372	=
At most 2 0.027939 6.319117 17.79730 0.8721 At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * denotes rejection of the hypothesis at the 0.05 level * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.168308 -2.904258 0.444976 -1.92946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): 0.001682 -0.004836 D(LSPOT) -0.005073 -0.000671 -0.003628	At most 1	0.075536	17.51473	24.15921	0.3056	
At most 3 0.022044 4.970768 11.22480 0.4814 At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * denotes rejection of the hypothesis at the 0.05 level * **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.488834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.168308 -2.904258 0.444976 -1.92946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): 0.001682 0.004836 D(LIR_UK) -0.005073 -0.000671 -0.003628 -0.004836 0.01254 0.001682 D(LSPOT) -0.005088 <td>At most 2</td> <td>0.027939</td> <td>6.319117</td> <td>17.79730</td> <td>0.8721</td> <td></td>	At most 2	0.027939	6.319117	17.79730	0.8721	
At most 4 0.011334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * * 0.01334 2.542019 4.129906 0.1310 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * * * * * 0.01334 0.01330 * 0.01310 **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=1): CPI_UK LCPI_US CPI_US 2.559393 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.92946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): 0.001682 -0.004836 -0.002644 0.001682 0.014826 0.014836 0.01254 0.0004836 0.01254 0.003030 0.01254 0.0004836 0.012540 0.00	At most 3	0.022044	4.970768	11.22480	0.4814	
Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US 2.32559 0.525994 6.452675 -2.917368 2.232559 0.525994 6.452675 -2.917368 2.51799 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LSPOT) -0.005073 -0.000671 -0.003628 D(LSPOT) -0.005088 -0.002292 0.001254 0.004366 D(LCPL_UK) 0.0013134 0.001275 -0.006007 0.003339 <td>At most 4</td> <td>0.011334</td> <td>2.542019</td> <td>4.129906</td> <td>0.1310</td> <td>_</td>	At most 4	0.011334	2.542019	4.129906	0.1310	_
* denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468934 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.000930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level					
**Mackinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468934 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha):	* denotes rejecti	ion of the hypothe	esis at the 0.05 l	evel		
Unrestricted Cointegrating Coefficients (normalized by b*S11*b=l): LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.322559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha):	**MacKinnon-Ha	aug-Michelis (199	39) p-values			
LIR_UK LIR_US LSPOT LCPI_UK LCPI_US 2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.003628 -0.004836 D.001254 0.000930 D(LSPOT) -0.005088 -0.002292 -0.001254 0.004144 D(LCPI_UK) 0.00175 -0.0067788 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939 -0.004936	Unrestricted Co	integrating Coeffi	cients (normaliz	zed by b*S11*b=l):		
2.232559 0.525994 6.452675 -2.917368 2.559393 5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPI_UK) 0.031334 0.001275 -0.006778 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	LIR_UK	LIR_US	LSPOT	LCPI_UK	LCPI_US	
5.211599 -1.166817 6.414865 -1.468834 -2.740902 3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.004930 D(LCPI_UK) 0.031334 0.001275 -0.006798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	2.232559	0.525994	6.452675	-2.917368	2.559393	
3.216709 -1.075969 -5.465533 0.241471 0.724072 -1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.000430 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	5.211599	-1.166817	6.414865	-1.468834	-2.740902	
-1.402045 3.158308 -2.904258 0.444976 -1.929946 2.594429 -1.478534 -8.945306 -1.222705 0.152110 Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.000930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	3.216709	-1.075969	-5.465533	0.241471	0.724072	
Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.00715 0.024209 -0.006007 0.003939	-1.402045 2.594429	3.158308 -1 478534	-2.904258 -8.945306	0.444976 -1 222705	-1.929940 0.152110	
Unrestricted Adjustment Coefficients (alpha): D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939		1.470304	0.345500	1.222103	5.152110	_
D(LIR_UK) -0.001125 -0.004051 -0.002644 0.001682 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPL_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPL_US) -0.00715 0.024209 -0.006007 0.003939	Unrestricted Adj	ustment Coeffici	ents (alpha):			
D(LIR_US) -0.001125 -0.004051 -0.002644 0.001882 D(LIR_US) -0.005073 -0.000671 -0.003628 -0.004836 D(LSPOT) -0.005088 -0.002292 0.001254 0.000930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939		0.004425	0.004054	0.000044	0.004602	=
D(LSPOT) -0.005088 -0.002292 0.001254 0.00930 D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	D(LIR_UK)	-0.001125	-0.004051 -0.000671	-0.002644 -0.003638	0.001682	
D(LCPI_UK) 0.031334 0.001275 -0.005798 -0.004144 D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	D(LSPOT)	-0.005088	-0.002292	0.001254	0.000930	
D(LCPI_US) -0.007115 0.024209 -0.006007 0.003939	D(LCPI_UK)	0.031334	0.001275	-0.005798	-0.004144	
	D(LCPI_US)	-0.007115	0.024209	-0.006007	0.003939	~

Figure 6.9: Output for Johansen's Cointegration test

EViews produces results for various hypothesis tested, from no cointegration (r = 0) to to increasing number of cointegrating vectors (see Figure ??). The eigenvalues of matrix $\hat{\Pi}$ is given in the second column. In the third column λ_{trace} statistic is higher than the corresponding critical value at 5% significance for the first hypothesis. This means that we reject the null hypothesis of no cointegration.

However, we cannot reject the hypothesis that there is at most one cointegrating equation. On the basis of λ_{max} statistics (the second panel) it is also possible to accept that there is only one cointegrating relationship. The following two panels provide estimates of matrices β and α respectively.

Note the warning on the top of the output window that saying that critical values assume no exogenous series. This means that we have to take into account that the critical values we are using might not be fully correct as we included exogenous dummy variables in the model. This may give as an explanation why we detected only one cointegrating equation instead of two which were expected. Another reason may be that the second relation based on the UIP condition involves changes of exchange rate rather than levels considered in the VAR model.