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Chapter 6

Multivariate Time Series Analysis

6.0.1 Introduction

Multivariate analysis investigates dependence and interactions among a set of vari-
ables in multi-values processes. One of the most powerful method of analyzing
multivariate time series is the vector autoregression model. It is a natural extension
of the univariate autoregressive model to the multivariate case.

In this chapter we cover concepts of VAR modelling, non-stationary multivari-
ate time series and cointegration.

More detailed discussion can be found in Hamilton (1994), Harris (1995), En-
ders (2004), Tsay (2002), Zivot and Wang (2006).

6.1 Vector Autoregression Model

Let Yt = (Y1,t, Y2,t, ..., Yn,t)
′ denote an k × 1 vector of time series variables. The

basic vector autoregressive model of order p, V AR(p), is

Yt = c+Π1Yt−1 +Π2Yt−2 + ...+ΠpYt−p + ut, t = 1, ..., T, (6.1.1)

where Πi are k× k matrices of coefficients, c is a k× 1 vector of constants and ut is
an k× 1 unobservable zero mean white noise vector process with covariance matrix
Σ.

If we consider a special case of two dimensional vector Y, the V AR consists
of two equation (also called a bivariate V AR)

Yt =

(
Y1,t

Y2,t

)
=

(
c1
c2

)
+

(
π1
11 π1

12

π1
21 π1

22

)(
Y1,t−1

Y2,t−1

)

+

(
π2
11 π2

12

π2
21 π2

22

)(
Y1,t−2

Y2,t−2

)
+

(
u1,t

u2,t

)
(6.1.2)
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Multivariate Time Series Analysis

with cov (u1,t, u2,s) = σ12 for t �= s.
As in the univariate case with AR processes, we can use the lag operator to

represent V AR(p)

Π(L)Yt = c+ ut,

where Π(L) = In − Π1L− ...− ΠpL
p.

If we impose stationarity on Yt in (6.1.2), the unconditional expected value is
given by

µ = (In − Π1 − ...− Πp)
−1c.

Very often other deterministic terms or stochastic exogenous variables may be in-
cluded into the VAR specification to represent. More general form of the V AR(p)

model is
Yt = Π1Yt−1 +Π2Yt−2 + ...+ΠpYt−p + ΓXt + ut,

where Xt represents an m × 1 matrix of exogenous or deterministic variables, and
Γ is a matrix of parameters.
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6.1.1 Estimation of VARs and Inference on coefficients

Since the V AR(p) may be written as a system of equations with the same sets of
explanatory variables, its coefficients can be efficiently and consistently estimated
by estimating each of the components using the OLS method (see Hamilton (1994)).
Under standard assumptions regarding the behavior of stationary and ergodic VAR
models (see Hamilton (1994) the estimators of the coefficients are asymptotically
normally distributed.

An element of Π̂i is asymptotically normally distributed, so asymptotically
valid t-tests on individual coefficients may be constructed in the usual way (see
Chapter 2). More general linear hypotheses can also be tested using the Wald
statistic.

Lag Length Selection A reasonable strategy how to determine the lag length
of the VAR model is to fit V AR(p) models with different orders p = 0, ..., pmax and
choose the value of p which minimizes some model selection criteria. Model selection
criteria for V AR(p) could be based on Akaike (AIC), Schwarz-Bayesian (BIC) and
Hannan-Quinn (HQ) information criteria:

AIC(p) = ln |Σ̄(p)|+ 2

T
pn2

BIC(p) = ln |Σ̄(p)|+ lnT

T
pn2

HQ(p) = ln |Σ̄(p)|+ 2 ln lnT

T
pn2

Forecasting We can use VAR model to forecast times series in a similar way
to forecasting from a univariate AR model.

The one-period-ahead forecast based on information available at time T is

YT+1|T = c+Π1YT + ...+ΠpYT−p+1

while h-step forecast is

YT+h|T = c+Π1YT + ...+ΠpYT−p+1,

where YT+j|T = YT+j for j < 0. The h-step forecast errors may be expressed as

YT+h −YT+h|T =
h−1∑
s=0

ΨsεT+h−s,

where the matrices Ψs are determined by recursive substitution

Ψs =

p−1∑
j=1

Ψs−jΠj (6.1.3)

97

http://bookboon.com/


Download free eBooks at bookboon.com

Financial Econometrics

 
98 

Multivariate Time Series Analysis

with Ψ0 = In and Πj = 0 for j > p. The forecasts are unbiased since all of the
forecast errors have expectation zero and the MSE matrix for Yt+h|T is

Σ(h) = MSE
(
YT+h −YT+h|T

)
=

h−1∑
s=0

ΨsΣΨ
′
s.

The h-step forecast in the case of estimated parameters is

ŶT+h|T = Π̂1ŶT+h−1|T + ...+ Π̂pŶT+h−p|T ,

where Π̂j are the estimated matrices of parameters. The h-step forecast error is now

YT+h − ŶT+h|T =
h−1∑
s=0

ΨsεT+h−s +
(
Yt+h − ŶT+h|T

)

The estimate of the MSE matrix of the h-step forecast is then

Σ̂(h) =
h−1∑
s=0

Ψ̂sΣ̂Ψ̂
′
s

with Ψs =
s∑

j=1

Ψ̂s−jΠ̂j.

6.1.2 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the VAR
model provides information about a variable’s or a group of variables’ forecasting
ability for other variables. The following intuitive notion of a variable’s forecasting
ability is due to Granger (1969). If a variable, or group of variables, Y1 is found
to be helpful for predicting another variable, or group of variables, Y2 then Y1 is
said to Granger-cause Y2; otherwise it is said to fail to Granger-cause Y2. For-
mally, Y1 fails to Granger-cause Y2 if for all s > 0 the MSE of a forecast of Y2,t+s

based on (Y2,t, Y2,t−1, ...) is the same as the MSE of a forecast of Y2,t+s based on
(Y2,t, Y2,t−1, ...) and (Y1,t, Y1,t−1, ...). Note that the notion of Granger causality only
implies forecasting ability.

In a bivariate V AR(p) model for Yt = (Y1t, Y2t)
′, Y2 fails to Granger-cause Y1

if all of the p VAR coefficient matrices Π1, ...,Πp are lower triangular. That is, all of
the coefficients on lagged values of Y2 are zero in the equation for Y1. The p linear
coefficient restrictions implied by Granger non-causality may be tested using the
Wald statistic. Notice that if Y2 fails to Granger-cause Y1 and Y1 fails to Granger-
cause Y2, then the VAR coefficient matrices Π1, ...,Πp are diagonal.
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6.1.3 Impulse Response and Variance Decompositions

As in the univariate case, a V AR(p) process can be represented in the form of a
vector moving average (VMA) process.

Yt = µ+ ut +Ψ1ut−1 +Ψ2ut−2 + ...,

where the k×k moving average matrices Ψs are determined recursively using (6.1.3).
The elements of coefficient matrices Ψs mean effects of ut−s shocks on Yt.

That is, the (i, j)-th element, ψs
ij, of the matrix Ψs is interpreted as the impulse

response
∂Yi,t+s

∂uj,t

=
∂Yi,t

∂uj,t−s

= ψs
ij, i, j = 1, ..., T.

Sets of coefficients ψij(s) = ψs
ij, i, j = 1, ..., T are called the impulse response

functions.
It is possible to decompose the h-step-ahead forecast error variance into the

proportions due to each shock ujt.
The forecast variance decomposition determines the proportion of the variation

Yjt due to the shock ujt versus shocks of other variables uit for i �= j.
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6.1.4 VAR in EViews

As an example of VAR estimation in EViews, consider two time series of returns of
monthly IBM stocks and the market portfolio returns from Fama-French database
(data is contained in IBM1.wf1).

There are several ways to estimate VAR model in EViews. The first one is
through the main menu. Clicking on View/Estimate VAR... will open a dialog
window for VAR model estimation.

Figure 6.1: VAR model estimation dialog window

We choose Unrestricted VAR and in the Endogenous Variables box we
have to specify the list of endogenous time series variables to be included in the
VAR model. We consider two excess return series of the IBM stock IBM_ex and the
market portfolio Mkt_ex.

In the Lag Intervals for Endogenous we have to specify the order of the
model, that is interval of lags to be included in the model. If we want to build a
model with only two lags, we write 1 2. This means, we include all lags beginning
from the first one and ending with the lag of order 2. We do not specify any
exogenous variables apart from the intercept term c.

Another way of calling the VAR estimation dialog window is to select both
endogenous variables in the workfile and in the context menu (right button click)
choose Open/as VAR.... The Endogenous Variables box will be filled in auto-
matically.

Finally, we can estimate VAR model from the command line. There is a
separate object, called var, to declare the VAR model. The estimation of the above
mentioned example will look like
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var ibm2.ls 1 2 ibm_ex mkt_ex

Here ibm2 is a name of the var-object which will be saved in the workfile, ls indicates
the estimation method; in this case it is OLS estimation method of the unrestricted
VAR model. Then, specifications of the lags pairs and the list of endogenous vari-
ables follow. If one wishes to include exogenous variables besides the intercept, it
can be done by typing a symbol @ followed by a list of exogenous variables. For
example,

var ibm2.ls 1 2 ibm_ex mkt_ex @ exvar1 exvar2

Click OK and EViews produces an estimation output for the specified VAR model.

Figure 6.2: Output for the VAR model estimation

Two columns correspond to two equation in the VAR model. The only signifi-
cant coefficient besides the intercept one is at the second lag of the market portfolio
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returns in the IBM equation. As expected, there is a unidirectional dynamic rela-
tionship from the market portfolio returns to the IBM returns, Thus, the IBM return
is affected by the past movements of the market while past movements of IBM stock
returns do not affect the market portfolio returns. The second equation (for market
portfolio) is not significant as suggested by the F-statistics. This means that the
the estimated model cannot explain variation in the market portfolio returns. This
can happen because we possibly omitted some important exogenous variables or the
order of the model is inappropriately selected. EViews provides a tool to choose the
most suitable lag order. In the workfile menu choose View/Lag Structure/Lag
Length Criteria... to determine the optimal model structure. In the appeared
Lag Specification window we choose pmax = 8 (maximal lag order).

All criteria indicate that the optimal lag order of the model is 0. This means
that the VAR model is inappropriate model to explain IBM and market portfolio
returns. Indeed, we know from the CAPM that market portfolio returns affect
the stock returns contemporaneously and are not in lag relationship. Thus, either
additional exogenous factors should be found to include in the model or another
structure of the model should be employed in this case.
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Figure 6.3: Output for the lag length selection procedure

Lag selection can be programmed manually in the same way as it is done for
ARMA model (see Chapter 3). There are some command references given below
which can be used to assess various statistic values in the VAR analysis in EViews.

6.2 Cointegration

The assumption of stationary of regressors and regressands is crucial for the proper-
ties and the OLS estimators discussed in Chapter 2. In this case, the usual statistical
results for the linear regression model and consistency of estimators hold. However,
when variables are non-stationary then the usual statistical results may not hold.

6.2.1 Spurious Regression

If there are trends in the data (deterministic or stochastic) this can lead to a spurious
results when running OLS regression. This is because time trend will dominate other
stationary variables and the OLS estimators will pick up covariances generated by
time trends only. While the effects of deterministic trends can be removed from the
regression by either including time trend regressor or simply de-trending variables,
non-stationary variables with stochastic trends may lead to invalid inferences.
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Var Data Members

Data Member Description

@eqlogl(k) log likelihood for equation k

@eqncoef(k) number of estimated coefficients in equation k

@eqregobs(k) number of observations in equation k

@meandep(k) mean of the dependent variable in equation k

@r2(k) R-squared statistic for equation k

@rbar2(k) adjusted R-squared statistic for equation k

@sddep(k) standard deviation of dependent variable in equation k

@se(k) standard error of the regression in equation k

@ssr(k) sum of squared residuals in equation k

@aic Akaike information criterion for the system

@detresid determinant of the residual covariance matrix

@hq Hannan-Quinn information criterion for the system

@logl log likelihood for system

@ncoefs total number of estimated coefficients in the var

@neqn number of equations

@regobs number of observations in the var

@sc Schwarz information criterion for the system

@svarcvgtype
Returns an integer indicating the convergence type of the structural decomposi-
tion estimation: 0 (convergence achieved), 2 (failure to improve), 3 (maximum
iterations reached), 4 (no convergence-structural decomposition not estimated)

@svaroverid over-identification LR statistic from structural factorization

@totalobs sum of "@eqregobs" from each equation ("@regobs*@neqn")

@coefmat coefficient matrix (as displayed in output table)

@coefse matrix of coefficient standard errors (corresponding to the output table)

@impfact factorization matrix used in last impulse response view

@lrrsp accumulated long-run responses from last impulse response view

@lrrspse standard errors of accumulated long-run responses

@residcov covariance matrix of the residuals

@svaramat estimated A matrix for structural factorization

@svarbmat estimated B matrix for structural factorization

@svarcovab covariance matrix of stacked A and B matrix for structural factorization

@svarrcov restricted residual covariance matrix from structural factorization

Consider, for example,

Y1,t = Y1,t−1 + u1,t, u1,t ∼ IN(0, 1)

Y2,t = Y2,t−1 + u2,t, u2,t ∼ IN(0, 1)

Both of the variables are non-stationary and independent from each other. In the
regression Y1,t = β0 + β1Y2,t + εt, the value of true slope parameter β1 = 0. Thus,
the value of the OLS estimate β̂1 should be insignificant. The actual estimations
produce high R2 coefficients and highly significant β1.

The problem with the spurious regression is that t- and F-statistics do not
follow standard distributions. As shown in Phillips (1986), β̂1 does not converge in
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probability to zero, R2 converges to unity as T → ∞ so that the model will appear
to fit well even though it is misspecified.

Regression with I(1) data only makes sense when the data are cointegrated.

6.2.2 Cointegration

Let Yt = (Y1t, ..., Ykt)
′ denote an k× 1 vector of I(1) time series. Yt is cointegrated

if there exists an k × 1 vector β = (β1, ..., βk)
′ such that

Zt = β′Yt = β1Y1t + ...+ βkYkt ∼ I(0). (6.2.1)

The non-stationary time series in Yt are cointegrated if there is a linear combination
of them that is stationary. If some elements of β are equal to zero then only the
subset of the time series in Yt with non-zero coefficients is cointegrated.

There may be different vectors β such that Zt = β′Yt is stationary. In general,
there can be 0 < r < k linearly independent cointegrating vectors. All cointegrating
vectors form a cointegrating matrix B. This matrix is again not unique. Some
normalization assumption is required to eliminate ambiguity from the definition.

105

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf


Download free eBooks at bookboon.com

Financial Econometrics

 
106 

Multivariate Time Series Analysis

A typical normalization is

β = (1,−β2, ...,−βk)
′

so that the cointegration relationship may be expressed as

Zt = β′Yt = Y1t − β2Y2t − ...− βkYkt ∼ I(0).

6.2.3 Error Correction Models

Engle and Granger (1987) state that if a bivariate I(1) vector Yt = (Y1t, Y2t)
′ is coin-

tegrated with cointegrating vector β = (1,−β2)
′ then there exists an error correction

model (ECM) of the form

∆Y1t = δ1 + φ1(Y1,t−1 − β1Y2,t−1 +
∑
j=1

αj
11∆Y1,t−j +

∑
s=1

αj
12∆Y2,t−j + ε1t (6.2.2)

∆Y2t = δ2 + φ2(Y1,t−1 − β2Y2,t−1 +
∑
j=1

αj
21∆Y1,t−j +

∑
s=1

αj
22∆Y2,t−j + ε2t (6.2.3)

that describes the long-term relations of Y1t and Y2t. If both time series are I(1)

but are cointegrated (have a long-term stationary relationship), there is a force that
brings the error term back towards zero. If the cointegrating parameter β1 or β2 is
known, the model can be estimated by the OLS method.

6.2.4 Tests for Cointegration: The Engle-Granger Approach

Engle and Granger (1987) show that if there is a cointegrating vector, a simple
two-step residual-based testing procedure can be employed to test for cointegration.
In this case, a long-run equilibrium relationship between components of Yt can be
estimated by running

Y1,t = βY2,t + ut, (6.2.4)

where Y2,t = (Y2,t, ..., Yk,t)
′ is an (k− 1)× 1 vector. To test the null hypothesis that

Yt is not cointegrated, we should test whether the residuals ût ∼ I(1) against the
alternative ût ∼ I(0). This can be done by any of the tests for unit roots. The
most commonly used is the augmented Dickey-Fuller test with the constant term
and without the trend term. Critical values for this test is tabulated in Phillips and
Ouliaris (1990) or MacKinnon (1996).

Potential problems with Engle-Granger approach is that the cointegrating vec-
tor will not involve Y1,t component. In this case the cointegrating vector will not be
consistently estimated from the OLS regression leading to spurious results. Also, if
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there are more than one cointegrating relation, the Engle-Granger approach cannot
detect all of them.

Estimation of the static model (6.2.4) is equivalent to omitting the short-term
components from the error-correction model (6.2.3). If this results for autocorrela-
tion in residuals, although the results will still hold asymptotically, it might create a
severe bias in finite samples. Because of this, it makes sense to estimate the full dy-
namic model. Since all variables in the ECM are I(0), the model can be consistently
estimated using the OLS method. This approach leads to a better performance as
it does not push the short-term dynamics into residuals.

6.2.5 Example in EViews: Engle-Granger Approach

Consider as an example the Forward Premium Puzzle. Due to rational expectation
hypothesis, forward rate should be unbiased predictor of future spot exchange rate.
This means that in the regression of levels of spot St+1 on forward rate Ft the
intercept coefficient should be equal to zero and the slope coefficient should be
equal to unity.

Consider monthly data of the USG/GBP spot and forward exchange rate for
the period from January 1986 to November 2008 (the data is in FPP.wf1 file).
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Unit roots are often found in in levels of spot and forward exchange rates.
Augmented Dickey-Fuller test statistic values are -2.567 and -2.688 which are high
enough to fail rejecting the null hypothesis at 5% significance level. Phillips-Perron
test produces test statistic which value os on the border of the rejection region.
Thus, if two series are not cointegrated, there is a danger to obtain spurious results
from the OLS regression. However, if we look at plots of the two series we can see
that they co-move together very closely, so we can expect existence of cointegrating
relation between them.

Figure 6.4: Plots of forward and future spot USD/GBP exchange rates

To perform Engle-Granger test for cointegration let us run OLS regression
St+1 = βFt + ut in EViews and generate residuals from the model.

ls f_spt fwd

series resid1=resid

The second step is to test the residuals for stationarity. Augmented Dickey-Fuller
test strongly rejects the presence of a unit root in the residual series in the favour
of stationarity hypothesis.

Similar results are generated by other testing procedures. Thus, we conclude
that future spot and forward exchange rates are cointegrated. Hence, the OLS
results are valid for the regression in levels as well. In this case the slope coefficient
is equal to 0.957 which is positive and close to unity. However, we reject the null
hypothesis H0 : β1 = 1 with the Wald test.

Thus, the forward premium puzzle also exists even for the model in levels for
the exchange rates.
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Figure 6.5: Results of Augmented Dickey-Fuller test for residuals from the long-
run equilibrium relationship

Figure 6.6: Wald test results for testing H0 : β1 = 1

Another way of estimating cointegrating equation is to estimate a vector error
correction model. To do this, open both forward and spot series as VAR system
(select both series and in the context menu choose Open/as VAR...). In the VAR
type box select Vector Error Correction and in the Cointegration tab click on
Intercept (no trend) in CE - no intercept in VAR. EViews’ output is given
in Figure ??.

As expected, the output shows that the stationary series is approximately
St+1 − Ft with the mean around zero. Deviations from the long-run equilibrium
equation have significant effect on changes of the spot exchange rate. Another
highly significant coefficient α1

22 indicates a significant impact of ∆St on ∆Ft which
is not surprising. This underlies the relationships between the spot and forward rate
through the Covered Interest rate Parity condition (CIP).

The following subsection introduces an approach of testing for cointegration
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Figure 6.7: Output of the vector error correction model

when there exists more than one cointegrating relationship.

6.2.6 Tests for Cointegration: The Johansen’s Approach

An alternative approach to test for cointegration was introduced by Johansen (1988).
His approach allows to avoid some drawbacks existing in the Engle-Granger’s ap-
proach and test the number of cointegrating relations directly. The method is based
on the VAR model estimation.

Consider the V AR(p) model for the k × 1 vector Yt

Yt = Π1Yt−1 + ...+ΠpYt−p + ut, t = 1, ..., T, (6.2.5)

where ut ∼ IN(0,Σ).
Since levels of time series Yt might be non-stationary, it is better to transform

Equation (6.2.5) into a dynamic form, calling vector error correction model (VECM)

∆Yt = ΠYt−1 + Γ1∆Yt−1 + ...+ Γp−1∆Yt−p+1 + ut,

where Π = Π1 + ...+Πp − In and Γk = −
p∑

j=k+1

Πj, k = 1, ..., p− 1.
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Let us assume that Yt contains non-stationary I(1) time series components.
Then in order to get a stationary error term ut, ΠYt−1 should also be stationary.
Therefore, ΠYt−1 must contain r < k cointegrating relations. If the V AR(p) process
has unit roots then Π has reduced rank rank(Π) = r < k. Effectively, testing for
cointegration is equivalent to checking out the rank of the matrix Π.

If Π has a full rank then all time series in Y are stationary, if the rank of Π is
zero then there are no cointegrating relationships.

If 0 < rank (Π) = r < k. This implies that Yt is I(1) with r linearly indepen-
dent cointegrating vectors and k − r non-stationary vectors. Since Π has rank r it
can be written as the product

Π
(k×k)

= α
(k×r)

β′

(r×k)

,

where α and β are k × r matrices with rank(α) = rank(β) = r. The matrix β

is a matrix of long-run coefficients and α represents the speed of adjustment to
disequilibrium. The VECM model becomes

∆Yt = αβ′Yt−1 + Γ1Yt−1 + ...+ Γp−1∆Yt−p+1 + ut, (6.2.6)

with β′Yt−1 ∼ I(0).
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Johansen’s methodology of obtaining estimates of α and β is given below.
Johansen’s Methodology
Specify and estimate a V AR(p) model (6.2.5) for Yt.
Determine the rank of Π; the maximum likelihood estimate for β equals the

matrix of eigenvectors corresponding to the r largest eigenvalues of a k× k residual
matrix (see Hamilton (1994), Lutkepohl (1991), Harris (1995) for more detailed
description).

Construct likelihood ratio statistics for the number of cointegrating relation-
ships. Let estimated eigenvalues are λ̂1 > λ̂2 > ... > λ̂k of the matrix Π.

Johansen’s likelihood ratio statistic tests the nested hypotheses

H0 : r ≤ r0 vs. H1 : r > r0

The likelihood ratio statistic, called the trace statistic, is given by

LRtrace(r0) = −T

k∑
i=r0+1

log
(
1− λ̂i

)
.

It checks whether the smallest k−r0 eigenvalues are statistically different from zero.
If rank (Π) = r0 then λ̂r0+1, ..., λ̂k should all be close to zero and LRtrace(r0) should
be small. In contrast, if rank (Π) > r0 then some of λ̂r0+1, ..., λ̂k will be nonzero (but
less than 1) and LRtrace(r0) should be large.

We can also test H0 : r = r0 against H1 : r0 = r0 + 1 using so called the
maximum eigenvalue statistic

LRmax(r0) = −T log
(
1− λ̂r0+1

)
.

Critical values for the asymptotic distribution of LRtrace(r0) and LRmax(r0) statistics
are tabulated in Osterwald-Lenum (1992) for k − r0 = 1, ..., 10.

In order to determine the number of cointegrating vectors, first test H0 : r0 = 0

against the alternative H1 : r0 > 0. If this null is not rejected then it is concluded
that there are no cointegrating vectors among the k variables in Yt. If H0 : r0 = 0 is
rejected then there is at least one cointegrating vector. In this case we should test
H0 : r0 ≤ 1 against H1 : r0 > 1. If this null is not rejected then we say that there
is only one cointegrating vector. If the null is rejected then there are at least two
cointegrating vectors. We test H0 : r0 ≤ 2 and so on until the null hypothesis is not
rejected.

In a small samples tests are biased if asymptotic critical values are used without
a correction. Reinsel and Ahn (1992) and Reimars (1992) suggested small samples
bias correction by multiplying the test statistics with T − kp instead of T in the
construction of the likelihood ratio tests.
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6.2.7 Example in EViews: Johansen’s Approach

A very good example of a model with several cointegrating equations has been given
by Johansen and Juselius (1990) (1992) (see also Harris (1995)). They considered a
single equation approach to combine both Purchasing Power Parity and Uncovered
Interest rate Parity condition in one model.

In this model we expect two cointegrating equations between the UK consumer
price index P , the US consumer price index P ∗, USD/GBP exchange rate S and
two interest rates I and I∗ in the domestic and foreign countries respectively. If we
denote their log counterparts by the corresponding small letter, the theory suggest
that the following two relationships should hold in efficient markets with rational
investors: pt − p∗t = st and ∆st+1 = it − i∗t . The data is considered within the range
from January 1989 to November 2008 is given in PPPFP1.wf1 file.

We create the log counterparts of the variables in the standard ways, like

series lcpi_uk=log(cpi_uk)

and so on. In order to check for cointegration we can either estimate VECM
(open 5 series as VAR model) or create a Group with the variables. Johansen and
Juselius (1990) included into the model seasonal dummy variables as well as crude oil
prices. We restrict ourself with only seasonal dummy for simplicity. We can create
dummy variables by using a command @expand, which allows to create a group of
dummy variables by expanding out one or more series into individual categories.
For this purposes we need first to create a variable indicating the quarter of the
observation. We do it in the following way

series quarter=@quarter(cpi_uk)

The command @quarter returns the quarter of the year in which the current ob-
servation begins. The second step is to create the dummy variables:

group dum=@expand(quarter)

EViews will create a new group object dum containing four dummy variables for
each of the quarter of the observation.

In both cases, either with VAR or with group objects, one can perform Jo-
hansen’s test procedure by clicking on View/Cointegration Test....

The dialog window will ask offer to specify the form of the VECM and the
cointegrating equation (with or without intercept or trend components). We choose
the first option with no trend and intercept to avoid perfect collinearity since we
include four dummy variables as exogenous in the model. In the box Exogenous
Variables enter the name of the dummy variables group dum.

In the box Lag Intervals for D(Endogenous) we set 1 4 – we include 4 lags
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Figure 6.8: Johansen’s Cointegration test dialog window

in the model. This is determined by EViews as optimal according to 3 criteria (first
estimate VAR with any of the lag specifications, check the optimality of the lag
order in View/Lag Structure/Lag Specification/Lag Length Criteria and
then re-estimate the VECM with the optimal lag order).
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Figure 6.9: Output for Johansen’s Cointegration test

EViews produces results for various hypothesis tested, from no cointegration
(r = 0) to to increasing number of cointegrating vectors (see Figure ??). The
eigenvalues of matrix Π̂ is given in the second column. In the third column λtrace

statistic is higher than the corresponding critical value at 5% significance for the
first hypothesis. This means that we reject the null hypothesis of no cointegration.
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However, we cannot reject the hypothesis that there is at most one cointegrating
equation. On the basis of λmax statistics (the second panel) it is also possible to
accept that there is only one cointegrating relationship. The following two panels
provide estimates of matrices β and α respectively.

Note the warning on the top of the output window that saying that critical
values assume no exogenous series. This means that we have to take into account
that the critical values we are using might not be fully correct as we included ex-
ogenous dummy variables in the model. This may give as an explanation why we
detected only one cointegrating equation instead of two which were expected. An-
other reason may be that the second relation based on the UIP condition involves
changes of exchange rate rather than levels considered in the VAR model.
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